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Reference frames
North-East-Down:   

𝑥
𝑦
𝑧

Body:   
𝑥′
𝑦′

𝑧′

Relative rotation: 𝜔



Translational Dynamics

  𝑣𝑏 =
 𝐹𝑏
𝑚

−𝜔 ×  𝑣𝑏

  𝑝𝑛 =  𝑣𝑛

  𝑣𝑛 =
 𝐹𝑛
𝑚

  𝑝𝑛 = 𝑅Τ  𝑣𝑏



Rotational Dynamics

 𝐽 ∙  𝜔 = 𝜔 ×  𝐽 ∙ 𝜔 + 𝑇𝑏

𝑇 = 𝐽  𝜔 = 𝐽  𝜃 (1 dimensional)

(3 dimensional)

 𝜔 =  𝐽−1[𝜔 ×  𝐽 ∙ 𝜔 + 𝑇𝑏]



Rotational sim

𝜔 0 =
1
0
0

𝐽 =
1 0 0
0 2 0
0 0 3



Rotational sim

𝜔 0 =
1
0
0

𝐽 =
1 0.1 0
0.1 2 0.4
0 0.4 3



We know the angular velocity, but not the angle

 𝜔 = 𝑇/𝐽
 𝜃 = 𝜔

super easy 1 dimension



How to model rotations – 1 dimension

 𝑛𝑥

 𝑛𝑦

 𝑏𝑥

 𝑏𝑦

θ

𝑢𝑥
𝑢𝑦

=
cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

𝑣𝑥
𝑣𝑦

𝑣𝑥
𝑣𝑦

=
3
1

𝑢𝑥
𝑢𝑦

=
3.1
−0.4



How to model rotations – 3 dimensional

First Idea:
Euler angles
(yaw, pitch, roll)



Euler angles – how do we express the rotation?

𝑢𝑥
𝑢𝑦
𝑢𝑧

=
? ? ?
? ? ?
? ? ?

𝑣𝑥
𝑣𝑦
𝑣𝑧



How do we use this with our rigid body 
equations?

 𝜔 =  𝐽−1[𝜔 ×  𝐽 ∙ 𝜔 + 𝑇]

?



How do we use this with our rigid body 
equations?

(Sorry for different time scales)

𝐽 =
1 0 0
0 2 0
0 0 3



How do we use this with our rigid body 
equations?

(Sorry for different time scales)

𝐽 =
1 0.1 0
0.1 2 0.4
0 0.4 3



Euler angles – why don’t we use them?

These are very nonlinear

Major problem: Harry Ball Theorem
(Every cow must have at least one cowlick)

(You can’t comb the hair on a coconut)



A: Quaternions or Rotation Matrices!

Q: What do we use instead of Euler Angles?



Quaternions in 15 seconds

Very compact and elegant 
representation of attitude
…which we will not 
discuss today



Rotation Matrices a.k.a. Direction Cosine Matrices

𝑅 =

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

𝑢1
𝑢2
𝑢3

=

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

𝑣1
𝑣2
𝑣3

How to rotate vectors from 
one frame to another?

Convention:  𝑣𝑏 = 𝑅  𝑣𝑛
Word to the wise:
Everyone uses different conventions. 
Stick to one. Always check other 
people’s convention.



Rotation Matrices a.k.a. Direction Cosine Matrices

Derivative with respect to ω

 𝑟11  𝑟12  𝑟13
 𝑟21  𝑟22  𝑟23
 𝑟31  𝑟32  𝑟33

=

0 𝜔𝑧 −𝜔𝑦

−𝜔𝑧 0 𝜔𝑥

𝜔𝑦 −𝜔𝑥 0

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33



DCM sim

𝐽 =
1 0.1 0
0.1 2 0.4
0 0.4 3



DCM sim

𝐽 =
1 0 0
0 2 0
0 0 3



What makes DCMs hard?
Hard to visualize
• Solution: convert to Euler angles 

before plotting

Must be initialized right-handed and orthonormal
• Easiest solution: initialize to identity
• Easy solution: initialize as Euler angles then 

convert to DCM.
• If initial angle is free/unknown, use hard 

solution: enforce orthonormality as a constraint

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

=

𝑒𝑥
Τ

𝑒𝑦
Τ

𝑒𝑧
Τ

𝑒𝑥
Τ𝑒𝑥 = 1

𝑒𝑥
Τ𝑒𝑦 = 0

𝑒𝑦
Τ𝑒𝑦 = 1

𝑒𝑥 × 𝑒𝑦 - 𝑒𝑧 =
0
0
0

Matching conditions have 9 equations 
and 3 degrees of freedom
• Solution: Enforce small relative 

rotation = 0

𝑅1 = 𝑅2

𝑅1
Τ𝑅2 =

1 0 0
0 1 0
0 0 1

Only enforce 
these three

Only enforce this at one time point!
Doing this more than once destroys LICQ!

IMPORTANT:
Also enforce diagonal 
elements positive



Homework 1:
Reproduce these plots

(Sorry for different time scales)

𝐽 =
1 0.1 0
0.1 2 0.4
0 0.4 3

𝜔 0 =
1
0
0



Homework 2:
Match two
simulations
with different
states

 𝑥1 =

 𝑝𝑛
 𝑣𝑛
𝜔
𝑅

 𝑥2 =

 𝑝𝑛
 𝑣𝑏
𝜔
𝑅

 𝐹𝑛(𝑡) =
0.3𝑡 + 0.1 sin 3𝑡
0.4𝑡 + 0.2 sin 4𝑡
0.5𝑡 + 0.1 sin 5𝑡

𝑇𝑏(𝑡) =
1.5 sin 2𝑡
2 sin 1𝑡
sin 0.5𝑡

𝑝 0 = 𝑣 0 = 𝜔 0 =
0
0
0

𝐽 =
1 0.1 0.3
0.1 2 0.2
0.3 0.2 3

𝑅(0) =
1 0 0
0 1 0
0 0 1



Homework 3:
minimum torque satellite de-tumble
Multiple shooting with 200 timesteps, rk4 integrator

𝜔 0 =
2
1
4

𝑅(6) =
1 0 0
0 1 0
0 0 1

𝐽 =
1 0.1 0.3
0.1 2 0.2
0.3 0.2 3

𝑅(0) =
0.07 0.46 0.88
−0.89 −0.37 0.26
0.45 −0.80 0.39

Objective= 𝑘 𝑇𝑘
Τ
𝑇𝑘

𝜔 6 =
0
0
0



Homework 4: OPTIONAL BONUS QUESTION
same problem as homework 3, but in minimal time

−2
−2
−2

≤ 𝑇𝑘 ≤
2
2
2

Objective is now end time

Add bounds on the control:


