Aerospace Modeling Tutorial Lecture 1 - Rigid Body Dynamics

Greg and Mario

January 21, 2015

Reference frames

North-East-Down: $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$

Relative rotation: $\vec{\omega}$

Translational Dynamics

$$
\begin{array}{ll}
\dot{\vec{v}}_{n}=\frac{\vec{F}_{n}}{m} & \dot{\vec{v}}_{b}=\frac{\vec{F}_{b}}{m}-\vec{\omega} \times \vec{v}_{b} \\
\dot{\vec{p}}_{n}=\vec{v}_{n} & \dot{\vec{p}}_{n}=R^{\mathrm{T}} \vec{v}_{b}
\end{array}
$$

Rotational Dynamics

$$
T=J \dot{\omega}=J \ddot{\theta} \quad \text { (1 dimensional) }
$$

$$
\begin{aligned}
\overline{\bar{J}} \cdot \dot{\vec{\omega}} & =\vec{\omega} \times(\overline{\bar{J}} \cdot \vec{\omega})+\vec{T}_{b} \quad \text { (3 dimensional) } \\
\dot{\vec{\omega}} & =\overline{\bar{J}}^{-1}\left[\vec{\omega} \times(\overline{\bar{J}} \cdot \stackrel{\rightharpoonup}{\omega})+\vec{T}_{b}\right]
\end{aligned}
$$

Rotational sim
 $\omega(0)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
 $$
J=\left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right)
$$

$$
\omega(0)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

We know the angular velocity, but not the angle

super easy 1 dimension

$$
\begin{gathered}
\dot{\omega}=T / J \\
\dot{\theta}=\omega
\end{gathered}
$$

How to model rotations - 1 dimension

$$
\begin{aligned}
& \binom{u_{x}}{u_{y}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{v_{x}}{v_{y}} \\
& \binom{u_{x}}{u_{y}}=\binom{3.1}{-0.4} \\
& \hat{b}_{x} \\
& \quad\binom{v_{x}}{v_{y}}=\binom{3}{1}
\end{aligned}
$$

How to model rotations - 3 dimensional

First Idea:
Euler angles
(yaw, pitch, roll)

Euler angles - how do we express the rotation?

$$
\left(\begin{array}{l}
u_{1} \\
v_{1} \\
w_{1}
\end{array}\right)=\left(\begin{array}{rrr}
\cos (\psi) & \sin (\psi) & 0 \\
-\sin (\psi) & \cos (\psi) & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
u_{e} \\
v_{e} \\
w_{e}
\end{array}\right)
$$

$$
\left(\begin{array}{l}
u_{2} \\
v_{2} \\
w_{2}
\end{array}\right)=\left(\begin{array}{rrr}
\cos (\theta) & 0 & -\sin (\theta) \\
0 & 1 & 0 \\
\sin (\theta) & 0 & \cos (\theta)
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
\\
v_{1} \\
w_{1}
\end{array}\right)
$$

$$
\left(\begin{array}{c}
u_{b} \\
v_{b} \\
w_{b}
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & \cos (\phi) & \sin (\phi) \\
0 & -\sin (\phi) & \cos (\phi)
\end{array}\right)\left(\begin{array}{l}
u_{2} \\
v_{2} \\
w_{2}
\end{array}\right)
$$

$$
\left(\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right)=\left(\begin{array}{ccc}
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{array}\right)\left(\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right)
$$

$$
\left(\begin{array}{c}
u_{b} \\
v_{b} \\
w_{b}
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & \cos (\phi) & \sin (\phi) \\
0 & -\sin (\phi) & \cos (\phi)
\end{array}\right)\left(\begin{array}{rrr}
\cos (\theta) & 0 & -\sin (\theta) \\
0 & 1 & 0 \\
\sin (\theta) & 0 & \cos (\theta)
\end{array}\right)\left(\begin{array}{rrr}
\cos (\psi) & \sin (\psi) & 0 \\
-\sin (\psi) & \cos (\psi) & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
u_{e} \\
v_{e} \\
w_{e}
\end{array}\right)
$$

$\left(\begin{array}{c}u_{b} \\ v_{b} \\ w_{b}\end{array}\right)=\left(\begin{array}{ccc}\cos (\theta) \cos (\psi) & \cos (\theta) \sin (\psi) & -\sin (\theta) \\ \cos (\psi) \sin (\theta) \sin (\phi)-\cos (\phi) \sin (\psi) & \cos (\phi) \cos (\psi)+\sin (\theta) \sin (\phi) \sin (\psi) & \cos (\theta) \sin (\phi) \\ \cos (\phi) \cos (\psi) \sin (\theta)+\sin (\phi) \sin (\psi) & -\cos (\psi) \sin (\phi)+\cos (\phi) \sin (\theta) \sin (\psi) & \cos (\theta) \cos (\phi)\end{array}\right)\left(u_{e}\right)$

How do we use this with our rigid body equations?

$$
\dot{\vec{\omega}}=\overline{\bar{J}}^{-1}[\stackrel{\rightharpoonup}{\omega} \times(\overline{\bar{J}} \cdot \stackrel{\rightharpoonup}{\omega})+\vec{T}]
$$

$$
\theta
$$

How do we use this with our rigid body equations?

(Sorry for different time scales)

How do we use this with our rigid body equations?

(Sorry for different time scales)

Euler angles - why don't we use them?

$\left(\begin{array}{c}u_{b} \\ v_{b} \\ w_{b}\end{array}\right)=\left(\begin{array}{cc}\cos (\theta) \cos (\psi) & -\sin (\theta) \\ \cos (\psi) \sin (\theta) \sin (\phi)-\cos (\phi) \sin (\psi) & \cos (\phi) \cos (\psi)+\sin (\theta) \sin (\phi) \sin (\psi) \\ \cos (\theta) \sin (\phi) \\ \cos (\phi) \cos (\psi) \sin (\theta)+\sin (\phi) \sin (\psi) & -\cos (\psi) \sin (\phi)+\cos (\phi) \sin (\theta) \sin (\psi) \\ \cos (\theta) \cos (\phi)\end{array}\right)\left(\begin{array}{l}u_{e} \\ v_{e} \\ w_{e}\end{array}\right)$

These are very nonlinear

$$
\left(\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right)=\left(\begin{array}{ccc}
1 & \sin (\phi) \tan (\theta) & \cos (\phi) \tan (\theta) \\
0 & \cos (\phi) & -\sin (\phi) \\
0 & \sin (\phi) \sec (\theta) & \cos (\phi) \sec (\theta)
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
$$

Major problem: Harry Ball Theorem (Every cow must have at least one cowlick) (You can't comb the hair on a coconut)

$$
\lim _{\theta \rightarrow \frac{\pi}{2}} T(\phi, \theta, \psi)=\left(\begin{array}{ccc}
0 & 0 & -1 \\
\sin (\phi-\psi) & \cos (\phi-\psi) & 0 \\
\cos (\phi-\psi) & -\sin (\phi-\psi) & 0
\end{array}\right)
$$

Q: What do we use instead of Euler Angles?

A: Quaternions or Rotation Matrices!

Quaternions in 15 seconds

$$
q=\left(\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)
$$

$$
\vec{v}_{b}=\left(\begin{array}{ccc}
\left(2 q_{0}^{2}-1\right)+2 q_{1}^{2} & 2 q_{1} q_{2}+2 q_{0} q_{3} & 2 q_{1} q_{3}-2 q_{0} q_{2} \\
2 q_{1} q_{2}-2 q_{0} q_{3} & \left(2 q_{0}^{2}-1\right)+2 q_{2}^{2} & 2 q_{2} q_{3}+2 q_{0} q_{1} \\
2 q_{1} q_{3}+2 q_{0} q_{2} & 2 q_{2} q_{3}-2 q_{0} q_{1} & \left(2 q_{0}^{2}-1\right)+2 q_{3}^{2}
\end{array}\right) \vec{v}_{e}
$$

Very compact and elegant representation of attitude ...which we will not discuss today

$$
\frac{d}{d t}\left(\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}
0 & -\omega_{1} & -\omega_{2} & -\omega_{3} \\
\omega_{1} & 0 & \omega_{3} & -\omega_{2} \\
\omega_{2} & -\omega_{3} & 0 & \omega_{1} \\
\omega_{3} & \omega_{2} & -\omega_{1} & 0
\end{array}\right)\left(\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
0 & -\vec{\omega}^{T} \\
\vec{\omega} & -\vec{\omega} \times
\end{array}\right)\binom{q_{0}}{\vec{q}}
$$

Rotation Matrices a.k.a. Direction Cosine Matrices

How to rotate vectors from

$$
R=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)
$$

one frame to another?

$$
\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

Convention: $\vec{v}_{b}=R \vec{v}_{n}$
Word to the wise:
Everyone uses different conventions.
Stick to one. Always check other people's convention.

Rotation Matrices a.k.a. Direction Cosine Matrices

Derivative with respect to ω

$$
\left(\begin{array}{ccc}
\dot{r}_{11} & \dot{r}_{12} & \dot{r}_{13} \\
\dot{r}_{21} & \dot{r}_{22} & \dot{r}_{23} \\
\dot{r}_{31} & \dot{r}_{32} & \dot{r}_{33}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \omega_{z} & -\omega_{y} \\
-\omega_{z} & 0 & \omega_{x} \\
\omega_{y} & -\omega_{x} & 0
\end{array}\right)\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)
$$

R11

DCM sim

$J=\left(\begin{array}{c}1 \\ 0.1 \\ 0\end{array}\right.$
 0.1
 2 0.4
 0
 $\left.\begin{array}{c}0.4 \\ 3\end{array}\right)$

R12

DCM sim

$$
J=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

$$
\left(\begin{array}{l}
u_{b} \\
v_{b} \\
w_{b}
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & \cos (\phi) & \sin (\phi) \\
0 & -\sin (\phi) & \cos (\phi)
\end{array}\right)\left(\begin{array}{l}
u_{2} \\
v_{2} \\
w_{2}
\end{array}\right)
$$

What makes DCMs hard?

Hard to visualize

- Solution: convert to Euler angles before plotting

$$
\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)=\left(\begin{array}{c}
e_{x}^{\mathrm{T}} \\
e_{y}^{\mathrm{T}} \\
e_{z}^{\mathrm{T}}
\end{array}\right)
$$

Must be initialized right-handed and orthonormal

- Easiest solution: initialize to identity
- Easy solution: initialize as Euler angles then convert to DCM.

$$
\begin{aligned}
& e_{x}^{\mathrm{T}} e_{x}=1 \\
& e_{x}^{\mathrm{T}} e_{y}=0 \\
& \mathrm{~T}_{o}-1
\end{aligned} \quad e_{x} \times e_{y}-e_{z}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

- If initial angle is free/unknown, use hard

Doing this more than once destroys LICQ!

 solution: enforce orthonormality as a constraint$$
R_{1}=R_{2}
$$

Matching conditions have 9 equations and 3 degrees of freedom

- Solution: Enforce small relative rotation $=0$

$$
R_{1}^{\mathrm{T}} R_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \begin{gathered}
\text { Only enforce } \\
\text { these three } \\
\text { IMPORTANT: } \\
\text { Also enforce diagonal } \\
\text { elements positive }
\end{gathered}
$$

Homework 1: Reproduce these plots

$$
\omega(0)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad J=\left(\begin{array}{ccc}
1 & 0.1 & 0 \\
0.1 & 2 & 0.4 \\
0 & 0.4 & 3
\end{array}\right)
$$

(Sorry for different time scales)

Homework 2:
Match two simulations with different states

$$
\begin{gathered}
\vec{F}_{n}(t)=\left(\begin{array}{c}
0.3 t+0.1 \sin 3 t \\
0.4 t+0.2 \sin 4 t \\
0.5 t+0.1 \sin 5 t
\end{array}\right) \\
\vec{T}_{b}(t)=\left(\begin{array}{c}
1.5 \sin 2 t \\
2 \sin 1 t \\
\sin 0.5 t
\end{array}\right) \\
J=\left(\begin{array}{ccc}
1 & 0.1 & 0.3 \\
0.1 & 2 & 0.2 \\
0.3 & 0.2 & 3
\end{array}\right)
\end{gathered}
$$

$$
\vec{x}_{1}=\left(\begin{array}{c}
\vec{p}_{n} \\
\vec{v}_{n} \\
\vec{\omega} \\
R
\end{array}\right) \quad \vec{x}_{2}=\left(\begin{array}{c}
\vec{p}_{n} \\
\vec{v}_{b} \\
\vec{\omega} \\
R
\end{array}\right)
$$

$p(0)=v(0)=\omega(0)=$

$$
R(0)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Homework 3:

minimum torque satellite de-tumble
Multiple shooting with 200 timesteps, rk4 integrator

$$
\text { Objective }=\sum_{k} \vec{T}_{k}^{\mathrm{T}} \vec{T}_{k} \quad R(0)=\left(\begin{array}{ccc}
0.07 & 0.46 & 0.88 \\
-0.89 & -0.37 & 0.26 \\
0.45 & -0.80 & 0.39
\end{array}\right) \quad \omega(0)=\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right)
$$

$$
J=\left(\begin{array}{ccc}
1 & 0.1 & 0.3 \\
0.1 & 2 & 0.2 \\
0.3 & 0.2 & 3
\end{array}\right)
$$

$$
R(6)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\omega(6)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Homework 4: OPTIONAL BONUS QUESTION
same problem as homework 3, but in minimal time

Objective is now end time

Add bounds on the control: $\quad\left(\begin{array}{l}-2 \\ -2 \\ -2\end{array}\right) \leq \vec{T}_{k} \leq\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right)$

