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Simplified Optimal Control Problem in ODE

path constraints h(x, u) > 0

states x(t) ¥ terminal

initial valuexo ‘ constraint r(x(T)) > 0
controls u(t) i
0 : T
T
minimize / L(x(t),u(t)) dt + E(x(T))
X(')? U() 0
subject to
x(0)—x = 0, (fixed initial value)
x(t)—f(x(t),u(t)) = O, telo, T], (ODE model)
h(x(t),u(t)) > 0, te|0, T], (path constraints)
r(x(T)) > 0 (terminal constraints).



Recall: Optimal Control Family Tree
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Single Shooting:

Only discretized

controls in NLP
(sequential)

Collocation:
Discretized controls
and states in NLP

(simultaneous)

Multiple Shooting:

Controls and node

start values in NLP
(simultaneous/hybrid




Direct Methods

> “First discretize, then optimize”
» Transcribe infinite problem into finite dimensional, Nonlinear
Programming Problem (NLP), and solve NLP.
» Pros and Cons:
+ Can use state-of-the-art methods for NLP solution.
-+ Can treat inequality constraints and multipoint constraints
much easier.
- Obtains only suboptimal/approximate solution.
» Nowadays most commonly used methods due to their easy

applicability and robustness.



Direct Slngle Shooting [Hicks, Ray 1971; Sargent, Sullivan 1977]

Discretize controls u(t) on fixed grid 0 =tg < t1 < ... <ty =T,
regard states x(t) on [0, T| as dependent variables.

states x(t;
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Use numerical integration to obtain state as function x(t; q) of
finitely many control parameters g = (qo, g1, - -, qn—1)



NLP in Direct Single Shooting

After control discretization and numerical ODE solution, obtain
NLP:

-
minimize /0 L(x(t; q),u(t;q))dt+ E(x(T;q))

q
subject to
h(>i<(_t,,0q), u(le 9) 20 (discretized path constraints)
r(x(T;q))>0 (terminal constraints)

Solve with finite dimensional optimization solver, e.g. Sequential
Quadratic Programming (SQP).



Solution by Standard SQP

Summarize problem as

mqin F(q) s.t. H(q)>0.

Solve e.g. by Sequential Quadratic Programming (SQP), starting
with guess g° for controls. k := 0

1. Evaluate F(g), H(g¥) by ODE solution, and derivatives!
2. Compute correction Ag¥ by solution of QP:

1
n&in VF(qk)TAq+§AqTAkAq st. H(gX)+VH(¢g")"Ag > 0.
q

3. Perform step gkt1 = g¥ + a, Ag* with step length ay
determined by line search.



Hessian in Quadratic Subproblem
Matrix A% in QP
1
ngin VF(q) Ag+ EAqTAkAq st. H(g")+ VH(¢g")TAg > 0.
q

is called the Hessian matrix. Several variants exist:

> exact Hessian: Ak = Vgﬁ(q, @) with g the constraint
multipliers. Delivers fast quadratic local convergence.

> Update Hessian using consecutive Lagrange gradients, e.g. by
BFGS formula: superlinear

> In case of least squares objective F(q) = 1||R(q)||3 can also
use Gauss-Newton Hessian (good linear convergence).

A= () Gt



Direct Single Shooting

» Sequential simulation and optimization.
» Pros and Cons

Can use state-of-the-art ODE/DAE solvers.

Few degrees of freedom even for large ODE/DAE systems.

Active set changes easily treated.

Need only initial guess for controls g.

- Cannot use knowledge of x in initialization (e.g. in tracking
problems).

- ODE solution x(t; g) can depend very nonlinearly on g.

- Unstable systems difficult to treat.
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» Often used in engineering applications e.g. in packages gOPT
(PSE), DYOS (Marquardt), ...



Direct Collocation (Sketch) et 107

» Discretize controls and states on fine grid with node values
S~ X(t,').
» Replace infinite ODE

0=x(t) — f(x(t),u(t)), te]|0,T]

by finitely many equality constraints

ci(gi,si,siy1) = 0, i=0,....,N—1,
eg clgisisiy1) = =g — f( ‘ 2’+1,qi)

» Approximate also integrals, e.g.

tit1 si+ s
/ L(x(t), u(t))dt =~ Ii(qi, si, siv1) ==L ('2'“, qi) (tiv1—ti)
t

i



NLP in Direct Collocation

After discretization obtain large scale, but sparse NLP:

N—
minimize Z (gississit1) + E(sw)
i=0

s,q
subject to
so—xo = 0, (fixed initial value)
¢i(qi,siysiv1) = O, i=0,...,N—1, (discretized ODE model)
h(si,qi) > 0, i=0,...,N, (discretized path constrain
risy) > 0 (terminal constraints)

Solve e.g. with SQP method for sparse problems, or interior point
methods (IPM).



What is a sparse NLP?

General NLP:

0,
0.

AV

mvin F(w) s.t. { H(w)

is called sparse if the Jacobians (derivative matrices)

V,G" = 06 _ (8G> and V,HT

= ow~ \ow

Y

contain many zero elements.

In SQP or IPM methods, this makes subproblems much
cheaper to build and to solve.



Direct Collocation

» Simultaneous simulation and optimization.
» Pros and Cons:

+ Large scale, but very sparse NLP.

+ Can use knowledge of x in initialization.

+ Can treat unstable systems well.

+ Robust handling of path and terminal constraints.

- Adaptivity needs new grid, changes NLP dimensions.

» Successfully used for practical optimal control e.g. by Biegler
and Wachter (IPOPT), Betts, Bock/Schulz (OCPRSQP), v.
Stryk (DIRCOL), ...



Direct |\/|u|t|p|e Shooting [Bock and Plitt, 1981]

» Discretize controls piecewise on a coarse grid
u(t)=gq; for t €[t ti1]

» Solve ODE on each interval [t;, tj+1] numerically, starting with
artificial initial value s;:

xi(t;si,qi) = f(xi(t;si,qi),qi), t€[ti, tit],
xi(ti;si,qi) = si.

Obtain trajectory pieces x;(t;s;, ;).

> Also numerically compute integrals

tit1
/,-(s,-,q,-) = / L(x,-(t,-;s,-,q,-),q,-)dt
ti



Sketch of Direct Multiple Shooting
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NLP in Direct Multiple Shooting

N-1

min;rc’r,ﬂze Z/i(ShCli) + E(sn)
i=0

subject to

so—xp =0, initial value)

h(siuqf)z()’ I':O,...,/V7
r(sy) > 0.

(

Siy1 — X,'(I','+1; Si, q,-) =0,i=0,...,N—1, (continuity)
(discretized path constraint
(

terminal constraints)



Structured NLP

» Summarize all variables as w := (sp, qo, 51, q1, - - -, SN)-
Obtain structured NLP

v

, G(w) =0
min F(w) st { ngg > 0.

Jacobian VG(w¥)T contains dynamic model equations.

v

v

Jacobians and Hessian of NLP are block sparse, can be
exploited in numerical solution procedure.



QP = Discrete Time Problem

v [ 170 of 5T 1 1 1To pI1[ 1
Asi| g Qi ST | As —|—[ ][ p’V][ }

min
U i=o [Aq;| |si S Ri | Ag; Asn] Lpn Pu] | Asn
subject to
Asy —xfx = 0, (initial)
Asii1 — AiAs; — BiAg; — =0, i=0,...,N—1, (system)
CiAsi+ DiAqg; — C, < 0, i=0,...,N=1, (path)
CnAsy —cy < 0, (terminal)



Interpretation of Continuity Conditions

> In direct multiple shooting, continuity conditions
si+1 = Xxi(ti+1; Si, i) represent discrete time dynamic system.
» Linearized reduced continuity conditions (used in condensing
to eliminate Asy, ..., Asy) represent linear discrete time
system:

Asiy1 = (xi(tiv1; i, qi) — siv1) + XiAs[ + YiAgi =0,
i=0.. N—1

» If original system is linear, continuity is perfectly satisfied in
all SQP iterations.

» Lagrange multipliers A; for the continuity conditions are
approximation of adjoint variables. They indicate the costs
of continuity.



Condensing Techniq UE  [Bock Plitt, 1984]

As before in multiple shooting for BVPs, can use “condensing” of
linear system equations

AS()
_ Aqo
Xo Yo -1 As;
X1 Yl —I Aql

' AS2 —

1
%

o]

Xno1 Yno1 —T| | Asn-a
Agn-1
| Asy |

to eliminate Asy, ..., Asy from QP.
Results in condensed QP in variables Asy and Aqo, ..., Aqy only.



Riccati Recursion

Alternative to condensing: can use Riccati recursion within QP
solver addressing the full, uncondensed, but block sparse QP
problem.
» Same algorithm as discrete time Riccati difference equation
> Linear effort in number N of shooting nodes, compared to
O(N3) for condensed QP.

» Use Interiour Point Method to deal with inequalities, or
Schur-Complement type reduction techniques.



Direct Multiple Shooting

» Simultaneous simulation and optimization.
» Pros and Cons

+ uses adaptive ODE/DAE solvers

+ but NLP has fixed dimensions

+ can use knowledge of x in initialization (here bounds; more
important in online context).

can treat unstable systems well.

robust handling of path and terminal constraints.

easy to parallelize.

- not as sparse as collocation.

++ +

» Used for practical optimal control e.g by Franke (“HQP"),
Terwen (DaimlerChrysler); Santos and Biegler; Bock et al.
(“MUSCOD-II")



