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Overview

I Direct Single Shooting

I Direct Collocation

I Direct Multiple Shooting

I Structure Exploitation by Condensing

I Structure Exploitation by Riccati Recursion



Simplified Optimal Control Problem in ODE

terminal
constraint r(x(T )) ≥ 0

6
path constraints h(x, u) ≥ 0

initial value
x0 r states x(t)

controls u(t)
-p

0 t
p
T

minimize
x(·), u(·)

∫ T

0
L(x(t), u(t)) dt + E (x(T ))

subject to

x(0)− x0 = 0, (fixed initial value)
ẋ(t)−f (x(t), u(t)) = 0, t ∈ [0,T ], (ODE model)

h(x(t), u(t)) ≥ 0, t ∈ [0,T ], (path constraints)
r (x(T )) ≥ 0 (terminal constraints).



Direct Collocation (Sketch) [Tsang et al. 1975]

I Discretize controls and states on fine grid with node values
si ≈ x(ti ).

I Replace infinite ODE

0 = ẋ(t)− f (x(t), u(t)), t ∈ [0,T ]

by finitely many equality constraints

ci (qi , si , si+1) = 0, i = 0, . . . ,N − 1,

e.g. ci (qi , si , si+1) := si+1−si
ti+1−ti

− f
(
si+si+1

2 , qi

)
I Approximate also integrals, e.g.∫ ti+1

ti

L(x(t), u(t))dt ≈ li (qi , si , si+1) := L

(
si + si+1

2
, qi

)
(ti+1−ti )



Higher Order Collocation (1)

I Typically have intermediate grid points, e.g. M = 2, 3 or 4 per
subinterval.

I Denote sk as initial value at start time of interval. Collocation
time points t1k , . . . , t

M
k have unknown node values

y1k , . . . , y
M
k .

I Collocation points often do NOT include start and end point
of the interval (tk =: tstart and tk+1 =: tend)

I Special case of Implicit Runge Kutta (IRK) integration.
Typical choices: Gauss (interior points), Radau (interior and
end point), ...

I Drop index k for notational simplicity.



Higher Order Collocation (2)

(Drop index k for notational simplicity.)

I Use interpolation polynomial p(t; s, y1, . . . , yM) of degree M
satisfying

p(tstart; s, y
1, . . . , yM) = s,

p(t i ; s, y1, . . . , yM) = y i , i = 1, . . . ,M.

I Can represent p using Lagrange basis polynomials Ls , Ly1 , . . .,
i.e. write it as:

p(t; s, y1, . . . , yM) = sLs(t) +
M∑
i=1

y iLy i (t)

The Lagrange basis polynomials are functions of t only and
just depend on the collocation point time grid.



Higher Order Collocation (3)

I Determine node values y i uniquely by derivative conditions

∂p

∂t
(t i ; s, y1, . . . , yM) = f (y i , q), i = 1, . . . ,M

I Couple start and end points of consecutive intervals, i.e.
reintroduce lower index k and set
sk+1 = pk(tk+1; sk , y

1
k , . . . , y

M
k ).

I Can summarize all collocation equations in a constraint
ck(sk , yk , qk , sk+1) = 0 with

ck(s, y , q, s+) :=


∂pk
∂t (t1k ; s, y1, . . . , yM)− f (y1, q)

...
∂pk
∂t (tMk ; s, y1, . . . , yM)− f (yM , q)
pk(tk+1; s, y1, . . . , yM)− s+





Integral Objectives in Collocation

I How to approximate
∫ ti+1

ti
L(x(t), u(t))dt in direct collocation?

I Idea: use the collocation points and quadrature formula.

I This is equivalent to interpolating the values L(p(t i ; s, y), q),
i = 1, . . . ,M, and then integrating this polynomial.

I This leads to a weighted sum with weights ωi , i.e. we get the
integral approximation

l(s, y , q) :=
M∑
i=1

ωiL(y i , q)

I Note that least squares objective function structure is
perfectly passed from OCP to NLP in collocation.



NLP in Direct Collocation

After discretization obtain large scale, but sparse NLP:

minimize
s, y , q

N−1∑
k=0

lk(sk , yk , qk) + E (sN)

subject to

s0 − x0 = 0, (fixed initial value)
ck(sk , yk , qk , sk+1) = 0, k = 0, . . . ,N − 1, (discr. ODE model)

h(sk , qk) ≥ 0, k = 0, . . . ,N − 1, (discr. path constr.)
r (sN) ≥ 0. (terminal constraints)

Solve e.g. with SQP method for sparse problems, or interior point
methods (IPM).



What is a sparse NLP?

General NLP:

min
w

F (w) s.t.

{
G (w) = 0,
H(w) ≥ 0.

is called sparse if the Jacobians (derivative matrices)

∇wG
T =

∂G

∂w
=

(
∂G

∂wj

)
ij

and ∇wH
T

contain many zero elements.

In SQP or IPM methods, this makes subproblems much
cheaper to build and to solve.



Higher Order Control Parameterization (1)

I So far, we used one constant control qk per collocation
interval, i.e. a zero-order polynomial with uk(t; qk) := qk for
all t ∈ [tk , tk+1].

I Alternatively, one might allow a first or higher order
polynomial with more control parameters (still called qk) to
represent uk(t; qk) on the collocation interval.

I Note that controls by definition are allowed to jump, so we do
not require them to be continuous between collocation
intervals.



Higher Order Control Parameterization (2)

I The highest meaningful order is (M − 1), i.e. a polynomial for
uk(t; qk) such that

uk(t ik , qk) = qik , for i = 1, . . . ,M.

This means that we introduce one control variable per
collocation node, i.e. qk = (q1k , . . . , q

M
k ). We thus have M · nu

control variables per interval.

I Attention: optimizer might start to “play” with discretization
errors for too many control degrees of freedom per interval.



Where to Impose Path Constraints?

I So far, we used one inequality constraint h(sk , qk) ≥ 0 per
collocation interval.

I Alternatively, one can require the path constraint at
intermediate points.

I A typical choice are to take the collocation points. Then, on
each collocation interval, additional M path constraints are
imposed, i.e.

h(y ik , q
i
k) ≥ 0, for i = 1, . . . ,M.



Pseudospectral Methods

I One extreme case of collocation is to choose one collocation
interval only, i.e. N = 1, but with a very high order M, e.g.
M = 20.

I One then uses also one control, and one path constraint per
collocation time point.

I The result is a medium sized, but dense NLP.

I Advantage is that a high order is achieved.

I Disadvantage is that much sparsity is lost compared to lower
order collocation on multiple intervals.



Summary

I ...


