Exercises for Lecture Course on Modelling and System Identification (MSI)
Albert-Ludwigs-Universitit Freiburg — Winter Term 2014

Exercise 3: Another review of optimization, systems, and statistics
(to be returned on Nov 11, 2014, 8:15 in HS 101.00.026, or before in building 102, 1st floor, ’Anbau’)

Prof. Dr. Moritz Diehl and Robin Verschueren

Solutions

1. The gradient of a scalar function f : R™ — R is a vector with the partial derivatives with respect to
T, k=1...n:
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Using the product rule of differentiation, we have
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Collecting this partial derivatives for k = 1...n in a vector, we get
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The Hessian is the matrix of second partial derivatives.

(VQf(fE))k,l = 32 0 [mTQx + CTx} ,

= Q1+ Quk,

Or, in matrix form
Vif(z)=Q+Q".
Note that the Hessian is symmetric. This holds generally under continuity of f.

If () is symmetric and positive definite, it can be inverted. The stationary point 2* amounts to
0=(Q+Q)z" +c,
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This stationary point is a minimizer because of positive definiteness of Q, which implies convexity
of f. The minimum function value is then
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2. We use the following facts from basic mechanics, where we denote the position, the velocity, acce-
leration, force and mass with s, v, a, F, m respectively:

F(t) = m - a(t),
ds(t)

dt - U(t)v
do(t)

For our hockey puck system, we are interested in the 2-D position. We can derive the following
equations of motion from the basic facts above:
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In state-space form (& = Az + Bu) this becomes
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