Numerical Optimal Control, August 2014

Exercise 1: Quadratic programming

Joel Andersson Joris Gillis Moritz Diehl University of Freiburg — IMTEK

August 4th, 2014

Equilibrium position for a hanging chain

We want to model a chain attached to two supports and hanging in between. Let us discretise it
with N mass points connected by N — 1 springs. Each mass i has position (y;, z;), ¢ = 1,..., N.
The equilibrium point of the system minimises the potential energy. The potential energy of

each spring is
1

Ve = §Dz’ ((yi — Yir1)® + (zi — zi+1)2) .

The gravitational potential energy of each mass is

Vg? = Mm; go % -

The total potential energy is thus given by:

N-1
1
Vehain (Y5 2 5 - D’L yi+1)2 + (2 — Zl+1 + go Z myg Zq, (1)
1=
where y = [y1,--- ,yn]’ and z = [z1,- -+, zy]7. We wish to solve:
minimize Vehain (¥, 2). (2)

y?z

The problem we want to solve is relatively simple; this gives us the possibility to easily
analyse the behaviour of the numerical methods we will use. The problem can be made a bit
more involved by adding inequality constraints, modelling a plane that the chain might touch.

Formulate the problem in the following form, which is how quadratic programs (QPs) are
represented in CasADi:

1
minimize 3 tTHr+ g
x

subject to T < @ < Ty,

ap < Az < ayp,

where z = [y1, 21, ...,yn, zn]7 . In this representation, you get an equality constraint by having

(k) (k)

upper and lower bound equal, i.e. a),~ = a,; for some k.



Tasks:

1.1

1.2

1.3

1.3

1.4

1.5

Formulate the problem using N = 4, m; = 40/N kg, D; = 70N N/m, go = 9.81 m/s?
with the first and last mass point fixed to (—2, 1) and (2, 1), respectively. Before starting
to program, write down the required matrices and vectors on paper (yes, on paper).

. In a Python script, formulate the above matrices as numpy arrays. The following should

be helpful:

from numpy import x*

A = zeros((nA,nx))

g = zeros(nx)

ubx = inf * ones(nx) # Upper bound on z ts infinity

A[0,2] = 1 # set the element at the first row and third column to 1

where nx and nA are the number of variables and linear constraints, respectively. Try to
use Python for loops to construct these matrices using N as a parameter.

Unfortunately, the standard numpy or scipy packages do not ship with a QP solver (like
quadprog in MATLAB). To save you the trouble from installing a proper package for con-
vex programming (for example CVXOPT), we have provided you with a simple functiorﬂ
on the course website that allows you to solve a QP using qpOASES| via CasADi. Its usage
is:

x = qpsolve(H,g,lbx,ubx,A,lba,uba)

Visualize the solution by plotting (y, z) using matplotlib. This should be helpful:

from matplotlib import pylab as plt
plt.plot(Y,Z,’0-")
plt.show ()

Hint: This might be a good occasion to use a Python slice.

Introduce ground constraints: z; > 0.5 and z; — 0.1y; > 0.5. Solve your QP again and
plot the result. Compare the result with the previous one.

Extra: What would happen if you add instead of the piecewise linear ground constraints,
the nonlinear ground constraints z; > yf to your problem? The resulting problem is no
longer a QP, but is it convex?

Extra: What would happen if you add instead the nonlinear ground constraints z; > —yl-2
to your problem? Is the problem convex?

! Also available via https://gist.github.com/jaeandersson/d95cbbcdd00e056e8c0f


http://cvxopt.org
http://qpoases.org
https://gist.github.com/jaeandersson/d95cbbcdd00e056e8c0f

