Exercise 5: Linear Least Squares (advanced)

(to be returned on Nov 25, 2014, 8:15 in HS 26, or before in building 102, 1st floor, 'Anbau')

Prof. Dr. Moritz Diehl and Robin Verschueren

Please remember to provide a solution on paper (written or typed) including all the necessary graphs from
MATLAB. The MATLAB code (.m-files) should be sent to
robin.verschueren@gmail.com and giovanni@ampyxpower.com

Aim of this sheet is to perform fitting of a non-linear curve with linear least squares and to become acquainted with recursive least squares.

Solution

1. Modeling the car:

(a) The linear ODE is as follows:

$$
\dot{v}_{X}(t)=C_{1} D(t)-C_{2}-C_{3} v_{X}(t) .
$$

Solution with undetermined coefficients:

We are looking for the general solution as the sum of the solution to the homogeneous equation and a particular solution.

$$
v_{\mathrm{g}}(t)=v_{\mathrm{h}}(t)+v_{\mathrm{p}}(t)
$$

First, rewrite the ODE as such:

$$
\dot{v}_{X}(t)+C_{3} v_{X}(t)=C_{1} D-C_{2}
$$

Let's assume a solution to the homogeneous equation $\left(\dot{v}_{X}+C_{3} v_{X}=0\right)$ is of the form $A \cdot \exp (\lambda t)$. Putting this into the homogeneous differential equation gives us:

$$
\lambda \cdot e^{\lambda t}+C_{3} \cdot e^{\lambda t}=0
$$

Crossing out the exponentials, because they are bigger than zero everywhere, we get $\lambda=-C_{3}$, leading to

$$
v_{h}=A \cdot \exp \left(-C_{3} t\right)
$$

For the particular solution, we take $v_{p}=B$, as the right hand side is also constant (D is constant). Filling in the original differential equation gives us:

$$
\begin{aligned}
0+C_{3} B & =C_{1} D-C_{2} \\
\text { or } \quad B & =\frac{C_{1} D-C_{2}}{C_{3}}
\end{aligned}
$$

Now we have a general solution:

$$
v_{\mathrm{g}}=A e^{-C_{3} t}+\frac{C_{1} D-C_{2}}{C_{3}}
$$

We can determine the last unknown coefficient A from the inital condition $\left\{v_{X}(0)=0 \mathrm{~m} / \mathrm{s}\right\}$:

$$
\begin{aligned}
0 & =A \cdot 1+\frac{C_{1} D-C_{2}}{C_{3}} \\
\text { or } \quad A & =-\frac{C_{1} D-C_{2}}{C_{3}}
\end{aligned}
$$

which leads to

$$
v_{X}(t)=\frac{C_{1} D-C_{2}}{C_{3}} \cdot\left(1-e^{-C_{3} t}\right)
$$

Solution with Laplace transform:

In the Laplace domain, the ODE is

$$
\begin{aligned}
s V_{X}(s)-v_{X}(0)+C_{3} V_{X}(s) & =\frac{C_{1} D-C_{2}}{s} \\
V_{X}(s) & =\frac{C_{1} D-C_{2}}{s\left(s+C_{3}\right)} \cdot \frac{C_{3}}{C_{3}}+\frac{v_{X}(0)}{s+C_{3}}
\end{aligned}
$$

Transforming back to the time domain, we get

$$
v_{X}(t)=\frac{C_{1} D-C_{2}}{C_{3}}\left(1-\exp \left(-C_{3} t\right)\right)+v_{X}(0) \cdot \exp \left(-C_{3} t\right)
$$

and after filling in the initial condition, we get the same answer as above.
(b) A well known fact from mechanics is

$$
p_{X}(t)=\int_{0}^{t} v_{X}(\tau) \mathrm{d} \tau+p_{X}(0)
$$

which gives in our case:

$$
\begin{aligned}
p_{X}(t) & =\frac{C_{1} D-C_{2}}{C_{3}} \cdot[\tau]_{0}^{t}+\frac{C_{1} D-C_{2}}{C_{3}^{2}} \cdot\left[\exp \left(-C_{3} \tau\right)\right]_{0}^{t}-\frac{v_{X}(0)}{C_{3}} \cdot\left[\exp \left(-C_{3} \tau\right)\right]_{0}^{t}+p_{X}(0), \\
& =\frac{C_{1} D-C_{2}}{C_{3}} \cdot t+\left(\frac{C_{1} D-C_{2}}{C_{3}^{2}}-\frac{v_{X}(0)}{C_{3}}\right)\left(\exp \left(-C_{3} t\right)-1\right)+p_{X}(0)
\end{aligned}
$$

