Exercises for Lecture Course on Modelling and System Identification (MSI) Albert-Ludwigs-Universität Freiburg - Winter Term 2014
 Exercise 6: Nonlinear Least Squares (to be returned on Dec 2, 2014, 8:15 in HS 26, or before in building 102, 1st floor, 'Anbau')

Prof. Dr. Moritz Diehl and Robin Verschueren
Please remember to provide a solution on paper (written or typed) including all the necessary graphs from MATLAB. The MATLAB code (.m-files) should be sent to
robin.verschueren@gmail.com and giovanni@ampyxpower.com

Aim of this sheet is to formulate and solve a maximum-likelihood problem with nonlinear least squares using MATLAB, using the MATLAB command lsqnonlin. As a central model, we are using the one-dimensional race car from Exercise 5:

$$
\dot{v}_{X}(t)=C_{1} D(t)-C_{2}-C_{3} v_{X}(t),
$$

with as input the dutycyle $D[-]$. Our aim is to estimate the three unknown parameters $C_{1}\left[\mathrm{~ms}^{-2}\right]$ the motor constant, and $C_{2}\left[\mathrm{~ms}^{-2}\right], C_{3}\left[\mathrm{~s}^{-1}\right]$ the zeroth and first order friction constants respectively. Because we do not know them, we will also have to estimate the initial conditions $p_{X}(0), v_{X}(0)$.

Exercise Tasks

1. Write in MATLAB a simulation function simstep that takes the following seven real numbers $C_{1}, C_{2}, C_{3}, p_{X}(0), v_{X}(0), \Delta T, D$ as inputs, and computes from them the state $p_{X}(T), v_{X}(T)$ at the time ΔT, assuming a constant value D on the interval $[0, \Delta T]$. Hint: use the solution formula from Exercise Sheet 5 .
2. Write a MATLAB simulation loop simloop around simstep that simulates N time steps of length ΔT and takes as input, besides $C_{1}, C_{2}, C_{3}, p_{X}(0), v_{X}(0), \Delta T$ and N a vector of values $D_{k}, k=1, \ldots, N$ that are assumed piecewise constant on each interval $[(k-1) \Delta T, k \Delta T]$. As output, the function should generate the values $p_{X}(k \Delta T)$ and $v_{X}(k \Delta T)$ for $k=0,1, \ldots, N$. Test your simulation loop with some values for $C_{1}, C_{2}, C_{3}, p_{X}(0), v_{X}(0), \Delta T, N$ and constant D for all intervals. Plot the trajectory.
(3 points)
3. Load data6_1.txt. These are time-dependent measurements of the form |time|velocity|D|. We assume no noise on the measurements of time and on D, and the velocity measurements i.i.d. measurement errors.
(a) First, we estimate $\left[C_{2}, C_{3}, v_{X}(0)\right]$ simultaneously. Assume that $C_{1}=10$ is known. First formulate a residual function [res] =residual (vel, theta) that computes the misfit $M(\theta)-y$ between the model predictions and the actual measurements. Then compute the nonlinear least squares fit of the velocity using the MATLAB command lsqnonlin. Hint: you can call a MATLAB script to load the data from the residual function. Plot the simulated versus the measured velocity values. What is the maximum likelihood estimate for $\left[C_{2}, C_{3}\right]$? Assume Gaussian additive noise on the measurements.
(3 points)
(b) * Estimate the confidence ellipsoid around the estimate of $\left[C_{2}, C_{3}, v_{X}(0)\right]$, using the same strategy as for linear least squares in Exercise Sheet 4, but replacing the matrix Φ_{N} by the Jacobian $\frac{\partial M}{\partial \theta}$. Hint: You can compute this Jacobian from the ODE solution for the velocity (Exercise 5).
(3 bonus points)
(c) * Try to estimate the four parameters $\left[C_{1}, C_{2}, C_{3}, v_{X}(0)\right]$ simultaneously. What values do you get? Do these sound reasonable? If not, try to find an explanation why the estimation failed. Hint: Estimate the confidence ellipsoid. (2 bonus points)
4. Load data6_2.txt. These are time-dependent measurements of the form |time|velocity|D|. Now, the dutycycle is not constant over the given interval.
(a) Estimate the four parameters $\left[C_{1}, C_{2}, C_{3}, v_{X}(0)\right]$ using the new data and the same procedure as before.
(3 points)
(b) * Estimate the confidence ellipsoid for the estimate.
