

The aim of this sheet is to learn how to build models from scratch and use them in nonlinear system identification.

Exercise Tasks

Regard a ball on a rod, attached with a torsion spring to an axle. On the end of the axle, there is a small handle (see also Fig. 1).

1. Come up with a model to describe the position (angle φ) and the velocity (angular velocity ω) of the ball with weight m [kg$]$. The weight of the rod with length $L[\mathrm{~m}]$ can be neglected, and the angle $\varphi=0 \mathrm{rad}$ is vertically down (as shown on Fig. 1). The angle of the handle is denoted by ψ [rad], where $\psi=0 \mathrm{rad}$ is vertically up (as depicted). Between the rod and the axle is a linear torsion spring, governed by the equation $\tau=-k \cdot \alpha$, where α [rad] the applied angle and $\tau[\mathrm{Nm}]$ is the developed torsion. Note that the spring is at rest in Fig. 1.
(5 points)
2. Download data7.txt from www.bit.do/MSI_ex. Given is a certain trajectory of the ball in the following format: |time|angle|angular velocity|. The following are known to be true:

$$
\begin{aligned}
m & =1 \mathrm{~kg} \\
L & =3 \mathrm{~m} \\
\psi & =\pi / 2 \mathrm{rad} \\
g & =9.81 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned}
$$

It is your job to estimate the initial angle $\varphi(0)$ and initial angular velocity $\omega(0)$, as well as the spring constant k (so $\theta=[\varphi(0), \omega(0), k]^{\top}$). Do this with nonlinear least squares (l sqnonlin in MATLAB). You will have to use similar simstep and simloop functions as in Exercise 6, however, now there is no (easy) closed-form analytic formula to go from one step to the next. To do this, use the explicit Euler method of numerical integration:

$$
x_{\text {next }}=x_{\text {current }}+f\left(x_{\text {current }}\right) \cdot \Delta T,
$$

where $f(x)$ is the right hand side of the ODE $\dot{x}=f(x)$ and ΔT is the step size. You can put this in a function euler_step. Invoke this function from a function called euler_loop, which does integration on the interval $t \in[0, N * \Delta T]$ s.
In doing the nonlinear least squares estimation, start with a reasonable initial guess θ_{0}. If you have a bad initial guess, your algorithm might not converge to the right solution!
(5 points)
This sheet gives in total 10 points and 0 bonus points

Abbildung 1: Sketch of pendulum.

