
Nonlinear Model Predictive Control

Moritz Diehl

Dynamic Technical Processes

SMB process Distillation column (Stuttgart)

(Dortmund)

Power Plant (Pavia) Polymer Reactor

(BASF)

I Idea: use model to
optimally operate plants
e.g. with respect to

I productivity,
I product purity,
I energy consumption,
I safety, ...

I Problem: offline optimal
control cannot cope with
model-plant mismatch
and disturbances

I Need closed loop
controls!

Nonlinear Model Predictive Control (NMPC)

I Each sampling time, solve for given system state x0 an
Optimal Control Problem:

� past

past controls

6� prediction horizon -
� control horizon -

state constraint

current state
x0 r

x(t) predicted

state trajectory

optimized

controls

u(t)

� -p u0

t0

p
t0+δ . . .

p
t0 +Tc

p
t0 +Tp

I Give first control move u0 back to real-world system. Move
horizon.

I Result: Feedback law u0(x0). Can compensate for
disturbances and modelling errors.

Example: Distillation Column (ISR, Stuttgart)

I Aim: to ensure product purity,
keep two temperatures (T14, T28)
constant despite disturbances

I least squares objective:

min

∫ t0+Tp

t0

∥∥∥∥ T14(t)− T ref
14

T28(t)− T ref
28

∥∥∥∥2

2

dt

I control horizon 10 min

I prediction horizon 10 h

I stiff DAE model with 82 differential
and 122 algebraic state variables

I Desired sampling time: 30 seconds.

NMPC Optimal Control Problem

terminal
constraint r(x(T)) ≥ 0

6
path constraints h(x, u) ≥ 0

initial value
x0 r states x(t)

controls u(t)
-p

0 t
p
T

minimize
x(·), u(·)

∫ T

0
L(x(t), u(t)) dt + E (x(T))

subject to x(0)− x0 = 0, (fixed initial value)
ẋ(t)−f (x(t), z(t), u(t)) = 0, t ∈ [0,T], (DAE model)

g(x(t), z(t), u(t)) = 0, t ∈ [0,T],
h(x(t), z(t), u(t)) ≥ 0, t ∈ [0,T], (path constraints)

r (x(T)) ≥ 0 (terminal constr.).

Online Optimization Algorithm

Basis:

I Direct Multiple Shooting for DAE

Online Features:

I Initialization of subsequent problems by Initial Value
Embedding.

I Real-Time Iterations optimize while problem is changing.

I Proof of nominal stability of combined System-Optimizer
Dynamics.

NLP in Direct Multiple Shooting

q q q q q q q q q q6

bq
-p p p p p p p

q
p
q

minimize
s,q

N−1∑
i=0

li (si , qi) + E (sN)

subject to

s0 − x0 = 0, (initial value)

si+1 − xi (ti+1; si , qi) = 0, i = 0, . . . ,N − 1, (continuity)

h(si , qi) ≥ 0, i = 0, . . . ,N, (discretized path constr.)

r (sN) ≥ 0. (terminal constraints)

Distillation Online Scenario

I System is in steady state, optimizer predicts constant
trajectory:

I Suddenly, system state x0 is disturbed.

I What to do with optimizer?

Conventional Approach

I use offline method, e.g. MUSCOD-II with BFGS (Leineweber, 1999).

I initialize with new initial value x0 and integrate system with
old controls.

I iterate until convergence.

Initialization

16th Iteration Solution (32nd Iteration)

Solution only after 600 seconds - much too late!

Conventional Approach

I use offline method, e.g. MUSCOD-II with BFGS (Leineweber, 1999).

I initialize with new initial value x0 and integrate system with
old controls.

I iterate until convergence.

Initialization 16th Iteration

Solution (32nd Iteration)

Solution only after 600 seconds - much too late!

Conventional Approach

I use offline method, e.g. MUSCOD-II with BFGS (Leineweber, 1999).

I initialize with new initial value x0 and integrate system with
old controls.

I iterate until convergence.

Initialization 16th Iteration Solution (32nd Iteration)

Solution only after 600 seconds - much too late!

Conventional, but with Gauss-Newton Hessian

I use Gauss-Newton method for least-squares integrals (Diehl, 2001)

Initialization

First Iteration Solution (6th Iteration)

Solution still takes two minutes - can’t we do better?

Conventional, but with Gauss-Newton Hessian

I use Gauss-Newton method for least-squares integrals (Diehl, 2001)

Initialization First Iteration

Solution (6th Iteration)

Solution still takes two minutes - can’t we do better?

Conventional, but with Gauss-Newton Hessian

I use Gauss-Newton method for least-squares integrals (Diehl, 2001)

Initialization First Iteration Solution (6th Iteration)

Solution still takes two minutes - can’t we do better?

Conventional, but with Gauss-Newton Hessian

I use Gauss-Newton method for least-squares integrals (Diehl, 2001)

Initialization First Iteration Solution (6th Iteration)

Solution still takes two minutes - can’t we do better?

New Approach: Initial Value Embedding

I Initialize with old trajectory, accept violation of s0 − x0 = 0

Initialization

First Iteration Solution (3rd Iteration)

First iteration nearly solution! Is this always so?

New Approach: Initial Value Embedding

I Initialize with old trajectory, accept violation of s0 − x0 = 0

Initialization First Iteration

Solution (3rd Iteration)

First iteration nearly solution! Is this always so?

New Approach: Initial Value Embedding

I Initialize with old trajectory, accept violation of s0 − x0 = 0

Initialization First Iteration Solution (3rd Iteration)

First iteration nearly solution! Is this always so?

New Approach: Initial Value Embedding

I Initialize with old trajectory, accept violation of s0 − x0 = 0

Initialization First Iteration Solution (3rd Iteration)

First iteration nearly solution! Is this always so?

Test with NMPC Example Problem

minimize
x(·), u(·)

∫ 3

0
x(t)2+u(t)2 dt s.t.


x(0) = x0,
ẋ = (1 + x)x+u, t ∈ [0, 3],
|x | ≤ 1, |u| ≤ 1, t ∈ [0, 3],
x(3) = 0.

I Before, system was in state x0 = 0.05

I Optimizer had found solution for x0 = 0.05

I After disturbance, new state is x0 = 0.40� 0.05

I How to compute new solution?

Transition from x0 = 0.05 to x0 = 0.4

Conventional Initialization (old controls, new initial value):

Initial Value Embedding (old solution, violates s0 − x0 = 0):

First Iteration

Conventional:

Initial Value Embedding:

2nd Iteration

Conventional:

Initial Value Embedding (already solution):

Initial Value Embedding
N

L
P

 v
a
ri
a
b
le

s

initialization

first iteration

exact
solution

active−set change

initial value x
0

2
nd

 iteration

I first iteration is tangential
predictor for exact solution (for
exact Hessian SQP)

I also valid for active set changes

I derivative can be computed
before x0 is known: first
iteration nearly without delay

Why wait until convergence and do nothing in the meantime?

Initial Value Embedding
N

L
P

 v
a
ri
a
b
le

s

initialization

first iteration

exact
solution

active−set change

initial value x
0

2
nd

 iteration

I first iteration is tangential
predictor for exact solution (for
exact Hessian SQP)

I also valid for active set changes

I derivative can be computed
before x0 is known: first
iteration nearly without delay

Why wait until convergence and do nothing in the meantime?

Real-Time Iterations

Iterate, while problem is changing!

N
L

P
 v

a
ri
a

b
le

s

x
0

1st iteration

3rd iteration

0th iteration

2nd iteration

x
0

x
0

x
0

I tangential prediction
after each change in x0

I solution accuracy is
increased with each
iteration when x0

changes little

I iterates stay close to
solution manifold

Real-Time Iteration Algorithm:

1. Preparation Step (long):
Linearize system at current iterate, perform partial
reduction and condensing of quadratic program.

2. Feedback Step (short):
When new x0 is known, solve condensed QP and
implement control u0 immediately. Complete SQP
iteration. Go to 1.

I minimal cycle-duration (as one SQP iteration)

I negligible feedback delay (≈ 1 % of cycle)

I nevertheless fully nonlinear optimization

Real-time iterations minimize feedback delay

- time

preparation

feedback

t

tk−1

preparation

feedback

tx0(tk)

u0 (x0(tk))

tk

t

tk+1

t

For distillation model:

I preparation time: ≈ 20.0 seconds

I feedback delay: ≈ 0.2 seconds (≈1%)

Real-Time Iterations with NMPC Example

I go through initial values x0 = 0.40, 0.35, . . . 0.05,

I then jump to −0.50,−0.55, . . . ,−0.70

I Start with exact solution of x0 = 0.40:

1st Real-Time Iteration, x0 = 0.35

Real-time iterations:

Exact solution for comparison:

2nd Real-Time Iteration, x0 = 0.30

Real-time iterations:

Exact solution for comparison:

4th Real-Time Iteration, x0 = 0.20

Real-time iterations:

Exact solution for comparison:

5th Real-Time Iteration, x0 = 0.15

Real-time iterations:

Exact solution for comparison:

6th Real-Time Iteration, x0 = 0.10

Real-time iterations:

Exact solution for comparison:

7th Real-Time Iteration, x0 = 0.05

Real-time iterations:

Exact solution for comparison:

8th Real-Time Iteration, x0 = −0.50

Real-time iterations:

Exact solution for comparison:

Next Real-Time Iteration, x0 = −0.55

Real-time iterations:

Exact solution for comparison:

Next Real-Time Iteration, x0 = −0.60

Real-time iterations:

Exact solution for comparison:

Next Real-Time Iteration, x0 = −0.65

Real-time iterations:

Exact solution for comparison:

Next Real-Time Iteration, x0 = −0.70

Real-time iterations:

Exact solution for comparison:

Nominal Stability of Closed Loop?

I Real process and optimizer are coupled with each other. Can
numerical errors grow and destabilize closed loop?

I Stability analysis combines concepts from both, NMPC
stability theory and convergence theory of nonlinear
optimization.

I Nominal stability shown under realistic assumptions.
[Diehl, Findeisen, Bock, Schlöder, Allgöwer: Nominal stability of the real-time iteration scheme for

nonlinear model predictive control. IEE Control Theory Appl. (2005)]

I After disturbance of size ε: loss of optimality is of order O(ε2)
for Gauss-Newton, and O(ε4) for exact Hessian.
[Diehl, Bock, Schlöder: A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback

Control. SIAM J. Control & Opt. (2005)]

Realization at Distillation Column

(with Allgöwer, Findeisen, Nagy, Schwarzkopf, Uslu)

I Parameter estimation using dynamic
experiments

I Online state estimation with Extended
Kalman Filter variant, using only 3
temperature measurements to infer all 82
system states

I Implementation of estimator and
optimizer on Linux Workstation.

I Communication with Process Control
System via FTP all 10 seconds.

I Self-synchronizing processes.

Large Disturbance (Heating), then NMPC

0 1000 2000 3000 4000 5000

70

72

74

NMPC

T
2
8
 [

o
C

]

0 1000 2000 3000 4000 5000

86

88

90

92

94

T
1
4
 [

o
C

]

0 1000 2000 3000 4000 5000
0

2

4

6

8

L
v
o
l [

l/
h

]

0 1000 2000 3000 4000 5000
1

2

3

4

Q
 [

k
W

]

time [s]

I Overheating by manual control

I NMPC only starts at t = 1500 s

I PI-controller not
implementable, as disturbance
too large (valve saturation)

I NMPC: at start control bound
active
⇒ T28 rises further

I Disturbance attenuated after
half an hour

Comparison with Theoretical Optimal Solution

0 1000 2000 3000 4000 5000

70

72

74

Experimental Closed−Loop

T
2

8
 [

o
C

]

0 1000 2000 3000 4000 5000

86

88

90

92

94

T
1

4
 [

o
C

]

0 1000 2000 3000 4000 5000
0

2

4

6

8

L
v
o

l [
l/
h
]

0 1000 2000 3000 4000 5000
1

2

3

4

Q
 [
k
W

]

time [s]

0 1000 2000 3000 4000 5000

70

72

74

Optimal Solution

0 1000 2000 3000 4000 5000

86

88

90

92

94

0 1000 2000 3000 4000 5000
0

2

4

6

8

0 1000 2000 3000 4000 5000
1

2

3

4

time [s]

Simulated Control of a Looping Kite

Kite can be controlled by two lines:

�
�
�
�
��QQ

Q
Q
QQ��

���@@��
XXXXX
XXXXXC

C
C
C

C
C
C
C

Control aim is to fly a “lying eight”:

60 40 20 0 −20 −40 −60
90

80

70

60

50

40

30

θ
 [

d
e

g
]

φ [deg]

1

2

3

4

5

6

7

0/8

Period duration: 8 seconds

Orbit is Open Loop Unstable

60 40 20 0 −20 −40 −60
90

80

70

60

50

40

30

θ
 [

d
e

g
]

φ [deg]

Simulated open loop controlled kite crashes onto ground after 25 seconds!
⇒ feedback necessary

Nonlinear Model Predictive Control Setup

0 1 2 3 4 5 6 7 8

40

60

80

θ
 [

d
e

g
]

0 1 2 3 4 5 6 7 8

−50

0

50

d
 θ

 /
 d

t
[d

e
g

/s
]

0 1 2 3 4 5 6 7 8
−50

0

50

φ
 [

d
e

g
]

0 1 2 3 4 5 6 7 8
−50

0

50

d
 φ

 /
 d

t
[d

e
g

/s
]

0 1 2 3 4 5 6 7 8
−10

0

10

ψ
 [

d
e

g
]

time [s]

I predict two full periods (16 seconds)

I optimize quadratic deviation from “lying
eight”

I choose one second sampling time

I use real-time iterations
recall: negligible feedback delay

Weak Kick

Open loop controlled system:

60 40 20 0 −20 −40 −60
90

80

70

60

50

40

30

θ
 [

d
e

g
]

φ [deg]

Crash after 5 seconds

NMPC controlled system:

60 40 20 0 −20 −40 −60
90

80

70

60

50

40

30

θ
 [

d
e

g
]

φ [deg]

Strong Kick

60 40 20 0 −20 −40 −60
90

80

70

60

50

40

30

θ
 [
d
e
g
]

φ [deg]

Robustness Test with Strong Random Kicks

60 40 20 0 −20 −40 −60
90

80

70

60

50

40

30

θ
 [
d
e
g
]

φ [deg]

Summary

I Nonlinear Model Predictive Control (NMPC) allows
optimal control of real world processes. Requires online
optimization.

I Online optimization by no means just an application of
fast offline optimization methods!

I Direct, simultaneous optimal control algorithms
favourable for NMPC.

I Our algorithm based on:
I direct multiple shooting with Gauss-Newton algorithm
I initial value embedding to deliver tangential predictor
I real-time iterations to have minimal cycle times and

negligible feedback delay

I Nominal stability can be guaranteed.

I Thourougly tested numerically and experimentally.

References

I M. Diehl, H. J. Ferreau and N. Haverbeke: Efficient Numerical Methods for Nonlinear MPC and Moving
Horizon Estimation. In: Nonlinear model predictive control, Eds. L. Magni, M.D. Raimondo and F.
Allgöwer. Series: Lecture Notes in Control and Information Sciences, Vol 384, pp. 391–417, Springer, 2009.

I Diehl, M., Bock, H.G., Schl oder, J.P.: A real-time iteration scheme for nonlinear optimization in optimal
feedback control. SIAM Journal on Control and Optimization 43(5), 17141736 (2005)

I M. Diehl, H.G. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer: Real-time optimization and
nonlinear model predictive control of processes governed by differential-algebraic equations. Journal of
Process Control 12, pp. 577-585, 2002.

I M. Diehl, R. Findeisen, S. Schwarzkopf, I. Uslu, F. Allgöwer, H. G. Bock, E. D. Gilles, and J. P. Schlöder:
An efficient algorithm for nonlinear model predictive control of large-scale systems,
Automatisierungstechnik.
Part I: Description of the method, 50(12), 2002.
Part II: Application to a Distillation Column, 51(1), 2003.

