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Dynamic Technical Processes

> Idea: use model to
optimally operate plants
e.g. with respect to

» productivity,
SMB process Distillation column (Stuttgart) > prOd uct purity,
(Dortmund) > energy consumption,
> safety, ...

> Problem: offline optimal
control cannot cope with
model-plant mismatch
and disturbances

» Need closed loop
controls!

Power Plant (Pavia) Polymer Reactor

(BASF)



Nonlinear Model Predictive Control (NMPC)

» Each sampling time, solve for given system state xg an
Optimal Control Problem:
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» Give first control move ug back to real-world system. Move
horizon.

» Result: Feedback law up(xp).  Can compensate for
disturbances and modelling errors.



Example: Distillation Column (ISR, Stuttgart)

» Aim: to ensure product purity,
keep two temperatures (T14, Tog)
constant despite disturbances

> least squares objective:

: / e || Ta(t) — o5
min ot
to Tag(t) — Tag

» control horizon 10 min

2

dt
2

» prediction horizon 10 h

» stiff DAE model with 82 differential
and 122 algebraic state variables

» Desired sampling time: 30 seconds.



NMPC Optimal Control Problem

path constraints h(x, u) > 0

states x(t) i terminal

initial value & constraint r(x(T)) > 0
controls u(t)
0 : T
T
minimize / L(x(t),u(t)) dt + E(x(T))
x(+),u(’) 0

(fixed initial value)
. te[0,T], (DAE model)

subjectto  x(0)—xg = 0
0
0, tel0,T],
0
0

x(8)=f(x(t), 2(t), u(t)) =
g(x(t), 2(¢), u(t))
h(x(t), 2(t), u(t))
r(x(T))

, telo,T], (path constraints)
(terminal constr.).
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Online Optimization Algorithm

Basis:
» Direct Multiple Shooting for DAE

Online Features:

> Initialization of subsequent problems by Initial Value
Embedding.

» Real-Time Iterations optimize while problem is changing.

» Proof of nominal stability of combined System-Optimizer
Dynamics.



NLP in Direct Multiple Shooting

N-1

min;rc’r,ﬂze Z/i(ShCli) + E(sn)
i=0

subject to

sgp— xg =0, initial value)

h(siuqf)z()’ I':O,...,/V7
r(sy) > 0.

(

Siy1 — X,'(I','+1; Si, q,-) =0,i=0,...,N—1, (continuity)
(discretized path constr.)
(

terminal constraints)



Distillation Online Scenario

» System is in steady state, optimizer predicts constant
trajectory:
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» Suddenly, system state xp is disturbed.
» What to do with optimizer?



Conventional Approach

> use offline method, e.g. MUSCOD-II with BFGS (Leineweber, 1999).

> initialize with new initial value xg and integrate system with
old controls.

> iterate until convergence.

Initialization _
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Conventional Approach

» use offline method, e.g. MUSCOD-II with BFGS (Leineweber, 1999).

> initialize with new initial value xg and integrate system with
old controls.

> iterate until convergence.

Initialization _ 16th Iteration,
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Conventional Approach

» use offline method, e.g. MUSCOD-II with BFGS (Leineweber, 1999).

> initialize with new initial value xg and integrate system with
old controls.

> iterate until convergence.

Initialization 16th Iteration.  Solution (32nd Iteration)
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Solution only after 600 seconds - much too late!
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Conventional, but with Gauss-Newton Hessian

» use Gauss-Newton method for least-squares integrals (pien, 2001)

Initialization _
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Conventional, but with Gauss-Newton Hessian

» use Gauss-Newton method for least-squares integrals (pien, 2001)

Initialization _ First Iteration
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Conventional, but with Gauss-Newton Hessian

» use Gauss-Newton method for least-squares integrals (pien, 2001)

Initialization First Iteration.  Solution (6th Iteration)
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Conventional, but with Gauss-Newton Hessian

» use Gauss-Newton method for least-squares integrals (pien, 2001)

Initialization First Iteration.  Solution (6th Iteration)
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Solution still takes two minutes - can't we do better?



New Approach: Initial Value Embedding

> Initialize with old trajectory, accept violation of s — xg =0

Initialization _
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New Approach: Initial Value Embedding

> Initialize with old trajectory, accept violation of s — xg =0

Initialization _ First lteration,
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New Approach: Initial Value Embedding
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> Initialize with old trajectory, accept violation of s — xg =0

Initialization _

First lteration,

Solution (3rd Iteration)
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New Approach: Initial Value Embedding

> Initialize with old trajectory, accept violation of s — xg =0

[nitialization _ First Iteration.  Solution (3rd Iteration)
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First iteration nearly solution! Is this always so?



Test with NMPC Example Problem

x(0) = xo,
3 .

_ x = (l14+x)x+u, te]0,3],
minimize /X(t)2+u(t)2 dt s.t. x| < (1 ]u])< 1 fe {0 3}
X(‘),U(-) 0 = ) =~ 4, y 95

x(3)= 0.
> Before, system was in state xg = 0.05

v

Optimizer had found solution for xp = 0.05
After disturbance, new state is xg = 0.40 > 0.05

v

» How to compute new solution?



Transition from xo = 0.05 to x; = 0.4

Conventional Initialization (old controls, new initial value):
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First lteration

Conventional:
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2nd lteration

Conventional:
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Initial Value Embedding

fistteration » first iteration is tangential

\// . -
predictor for exact solution (for
“~ exact Hessian SQP)

exact
solution » also valid for active set changes

2" jteration \4

/

initialization

NLP variables

» derivative can be computed
before xg is known: first
iteration nearly without delay

active—set change

initial value Xy



Initial Value Embedding

NLP variables

initialization

active—set change

first iteratiqn

2" jteration \4

/

~
exact
solution

initial value Xy

» first iteration is tangential
predictor for exact solution (for
exact Hessian SQP)

» also valid for active set changes

» derivative can be computed
before xg is known: first
iteration nearly without delay

Why wait until convergence and do nothing in the meantime?



Real-Time lterations

Iterate, while problem is changing!

i » tangential prediction
3rd iteration after each change in xg

2nd iteration \
1st iteration \ P

0Oth iteration

» solution accuracy is
increased with each
iteration when xp
changes little

NLP variables

~ > iterates stay close to

S g solution manifold




Real-Time Iteration Algorithm:

1. Preparation Step (long):
Linearize system at current iterate, perform partial
reduction and condensing of quadratic program.
2. Feedback Step (short):
When new xq is known, solve condensed QP and
implement control vy immediately. Complete SQP
iteration. Go to 1.

» minimal cycle-duration (as one SQP iteration)
» negligible feedback delay (=~ 1 % of cycle)

> nevertheless fully nonlinear optimization



Real-time iterations minimize feedback delay

feedback feedback
H __H A H
preparation preparation

X()(tk)

/\/

For distillation model:
» preparation time: ~ 20.0 seconds

» feedback delay: =~ 0.2 seconds (~1%)

~ time



Real-Time Iterations with NMPC Example

> go through initial values xg = 0.40,0.35,...0.05,
» then jump to —0.50,—0.55,...,—0.70

» Start with exact solution of xg = 0.40:
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1st Real-Time lteration,

Real-time iterations:

Xo = 0.35
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2nd Real-Time lteration, xo = 0.30

Real-time iterations:
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4th Real-Time lteration, xo = 0.20

Real-time iterations:
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5th Real-Time lteration, x; = 0.15

Real-time iterations:
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6th Real-Time lteration, x; = 0.10

Real-time iterations:
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7th Real-Time lteration, x; = 0.05

Real-time iterations:
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8th Real-Time lteration, x; = —0.50

Real-time iterations:
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Next Real-Time lteration, x; = —0.55

Real-time iterations:
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Next Real-Time lteration, x; = —0.60

Real-time iterations:
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Next Real-Time lteration, x; = —0.65

Real-time iterations:
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Next Real-Time lteration, x; = —0.70

Real-time iterations:
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Nominal Stability of Closed Loop?

» Real process and optimizer are coupled with each other. Can
numerical errors grow and destabilize closed loop?

» Stability analysis combines concepts from both, NMPC
stability theory and convergence theory of nonlinear
optimization.

» Nominal stability shown under realistic assumptions.

[Diehl, Findeisen, Bock, Schléder, Allgower: Nominal stability of the real-time iteration scheme for

nonlinear model predictive control. |IEE Control Theory Appl. (2005) ]

» After disturbance of size ¢: loss of optimality is of order O(e?)
for Gauss-Newton, and O(e*) for exact Hessian.
[Diehl, Bock, Schléder: A Real-Time lteration Scheme for Nonlinear Optimization in Optimal Feedback

Control. SIAM J. Control & Opt. (2005) |



Realization at Distillation Column

(with Allgdwer, Findeisen, Nagy, Schwarzkopf, Uslu)

» Parameter estimation using dynamic
experiments

» Online state estimation with Extended
Kalman Filter variant, using only 3
temperature measurements to infer all 82
system states

> Implementation of estimator and
optimizer on Linux Workstation.

» Communication with Process Control
System via FTP all 10 seconds.

» Self-synchronizing processes.



Large Disturbance (Heating), then NMPC

NMPC

Overheating by manual control
NMPC only starts at t = 1500 s

Pl-controller not
implementable, as disturbance
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Comparison with Theoretical Optimal Solution
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Simulated Control of a Looping Kite

Control aim is to fly a “lying eight”:

50
g 2
860)
B

70

)

Kite can be controlled by two lines:
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Period duration: 8 seconds



Orbit is Open Loop Unstable

9%0 40 -20 -40 -60

0
0 [deg]
Simulated open loop controlled kite crashes onto ground after 25 seconds!
= feedback necessary



Nonlinear Model Predictive Control Setup

6 [deg]
2

d6/dt[degis]
| 0 ldeg] )

do/ ot [degis]

0 1 2 5 6 7 8

P
time [s]

» predict two full periods (16 seconds)

» optimize quadratic deviation from “lying
eight”

» choose one second sampling time

> use real-time iterations
recall: negligible feedback delay



Weak Kick

Open loop controlled system: NMPC controlled system:
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Crash after 5 seconds



Strong Kick
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Robustness Test with Strong Random Kicks




Summary

» Nonlinear Model Predictive Control (NMPC) allows
optimal control of real world processes. Requires online
optimization.

» Online optimization by no means just an application of
fast offline optimization methods!

» Direct, simultaneous optimal control algorithms
favourable for NMPC.

» Our algorithm based on:

» direct multiple shooting with Gauss-Newton algorithm

» initial value embedding to deliver tangential predictor

» real-time iterations to have minimal cycle times and
negligible feedback delay

» Nominal stability can be guaranteed.

» Thourougly tested numerically and experimentally.
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