
Numerical Optimal Control

Moritz Diehl

July 17, 2014



Simplified Optimal Control Problem in ODE

terminal
constraint r(x(T )) ≥ 0

✻
path constraints h(x, u) ≥ 0

initial value
x0 r

states x(t)

controls u(t)
✲♣

0 t

♣
T

minimize
x(·),u(·)

∫ T

0
L(x(t), u(t)) dt + E (x(T ))

subject to

x(0)− x0 = 0, (fixed initial value)

ẋ(t)−f (x(t), u(t)) = 0, t ∈ [0,T ], (ODE model)

h(x(t), u(t)) ≥ 0, t ∈ [0,T ], (path constraints)

r (x(T )) ≥ 0 (terminal constraints)



More general optimal control problems

Many features left out here for simplicity of presentation:

◮ multiple dynamic stages

◮ differential algebraic equations (DAE) instead of ODE

◮ explicit time dependence

◮ constant design parameters

◮ multipoint constraints r(x(t0), x(t1), . . . , x(tend)) = 0



Optimal Control Family Tree

Three basic families: [Betts, 2001]

◮ Hamilton-Jacobi-Bellmann equation / dynamic
programming

◮ Indirect Methods / calculus of variations / Pontryagin

◮ Direct Methods (control discretization)



Principle of Optimality

Any subarc of an optimal trajectory is also optimal.

✻
intermediate
value x̄

s

initial
value x0

s

states x(t)

optimal
controls u(t)

✲♣

0 t̄
♣

T

Subarc on [t̄,T ] is optimal solution for initial
value x̄ .



Dynamic Programming Cost-to-go

IDEA:

◮ Introduce optimal-cost-to-go function on [t̄,T ]

J(x̄ , t̄) := min
x ,u

∫ T

t̄

L(x , u)dt + E (x(T )) s.t. x(t̄) = x̄ , . . .

◮ Introduce grid 0 = t0 < . . . < tN = T .

◮ Use principle of optimality on intervals [tk , tk+1]:

J(xk , tk) = min
x ,u

∫ tk+1

tk

L(x , u)dt + J(x(tk+1), tk+1)

s.t. x(tk) = xk , . . .

xkr x(tk+1)r

✲
tk+1tk

♣

T



Dynamic Programming Recursion

Starting from J(x , tN) = E (x), compute recursively backwards, for
k = N − 1, . . . , 0

J(xk , tk) := min
x ,u

∫ tk+1

tk

L(x , u)dt + J(x(tk+1), tk+1) s.t. x(tk) = xk , . . .

by solution of short horizon problems for all possible xk and
tabulation in state space.



Dynamic Programming Recursion

Starting from J(x , tN) = E (x), compute recursively backwards, for
k = N − 1, . . . , 0

J(xk , tk) := min
x ,u

∫ tk+1

tk

L(x , u)dt + J(x(tk+1), tk+1) s.t. x(tk) = xk , . . .

by solution of short horizon problems for all possible xk and
tabulation in state space.

❅
❅❘

✻

J(·, tN)

xN



Dynamic Programming Recursion

Starting from J(x , tN) = E (x), compute recursively backwards, for
k = N − 1, . . . , 0

J(xk , tk) := min
x ,u

∫ tk+1

tk

L(x , u)dt + J(x(tk+1), tk+1) s.t. x(tk) = xk , . . .

by solution of short horizon problems for all possible xk and
tabulation in state space.

❅
❅❘

✻

J(·, tN)

xN
❅
❅❘

✻

J(·, tN−1)

xN−1



Dynamic Programming Recursion

Starting from J(x , tN) = E (x), compute recursively backwards, for
k = N − 1, . . . , 0

J(xk , tk) := min
x ,u

∫ tk+1

tk

L(x , u)dt + J(x(tk+1), tk+1) s.t. x(tk) = xk , . . .

by solution of short horizon problems for all possible xk and
tabulation in state space.

❅
❅❘

✻

J(·, tN)

xN
❅
❅❘

✻

J(·, tN−1)

xN−1

· · ·

❅
❅❘

✻

J(·, t0)

x0



Hamilton-Jacobi-Bellman (HJB) Equation

◮ Dynamic Programming with infinitely small timesteps leads to
Hamilton-Jacobi-Bellman (HJB) Equation:

−∂J

∂t
(x , t) = min

u

(

L(x , u) +
∂J

∂x
(x , t)f (x , u)

)

s.t. h(x , u) ≥ 0.

◮ Solve this partial differential equation (PDE) backwards for
t ∈ [0,T ], starting at the end of the horizon with

J(x ,T ) = E (x).

◮ NOTE: Optimal controls for state x at time t are obtained
from

u∗(x , t) = argmin
u

(

L(x , u) +
∂J

∂x
(x , t)f (x , u)

)

s.t. h(x , u) ≥ 0.



Dynamic Programming / HJB

◮ “Dynamic Programming” applies to discrete time,
“HJB” to continuous time systems.

◮ Pros and Cons

+ Searches whole state space, finds global optimum.
+ Optimal feedback controls precomputed.
+ Analytic solution to some problems possible (linear systems

with quadratic cost → Riccati Equation)

◮ “Viscosity solutions” (Lions et al.) exist for quite general
nonlinear problems.

- But: in general intractable, because partial differential
equation (PDE) in high dimensional state space: “curse of
dimensionality”.

◮ Possible remedy: Approximate J e.g. in framework of
neuro-dynamic programming [Bertsekas and Tsitsiklis, 1996].

◮ Used for practical optimal control of small scale systems e.g.
by Bonnans, Zidani, Lee, Back, ...



Indirect Methods

For simplicity, regard only problem without inequality constraints:

terminal
cost E(x(T ))

✻

initial value
x0 r

states x(t)

controls u(t)
✲♣

0 t

♣
T

minimize
x(·),u(·)

∫ T

0
L(x(t), u(t)) dt + E (x(T ))

subject to

x(0)− x0 = 0, (fixed initial value)

ẋ(t)−f (x(t), u(t)) = 0, t ∈ [0,T ], (ODE model)



Pontryagin’s Minimum Principle

OBSERVATION: In HJB, optimal controls

u∗(t) = argmin
u

(

L(x , u) +
∂J

∂x
(x , t)f (x , u)

)

depend only on derivative ∂J
∂x
(x , t), not on J itself!

IDEA: Introduce adjoint variables

λ(t) =̂
∂J

∂x
(x(t), t)T ∈ R

nx

and get controls from Pontryagin’s Minimum Principle

u∗(t, x , λ) = argmin
u




 L(x , u) + λT f (x , u)

︸ ︷︷ ︸

Hamiltonian=:H(x ,u,λ)






QUESTION: How to obtain λ(t)?



Adjoint Differential Equation

◮ Differentiate HJB Equation

−∂J

∂t
(x , t) = min

u
H(x , u,

∂J

∂x
(x , t)T )

with respect to x and obtain:

−λ̇T =
∂

∂x
(H(x(t), u∗(t, x , λ), λ(t))) .

◮ Likewise, differentiate J(x ,T ) = E (x) and obtain terminal
condition

λ(T )T =
∂E

∂x
(x(T )).



How to obtain explicit expression for controls?

◮ In simplest case,

u∗(t) = argmin
u

H(x(t), u, λ(t))

is defined by
∂H

∂u
(x(t), u∗(t), λ(t)) = 0

(Calculus of Variations, Euler-Lagrange).

◮ In presence of path constraints, expression for u∗(t) changes
whenever active constraints change. This leads to state
dependent switches.

◮ If minimum of Hamiltonian locally not unique, “singular arcs”
occur. Treatment needs higher order derivatives of H.



Necessary Optimality Conditions

Summarize optimality conditions as boundary value problem:

x(0) = x0, initial value

ẋ(t) = f (x(t), u∗(t)), t ∈ [0,T ], ODE model

−λ̇(t) =
∂H

∂x
(x(t), u∗(t), λ(t))T , t ∈ [0,T ], adjoint equations

u∗(t) = argmin
u

H(x(t), u, λ(t)), t ∈ [0,T ], minimum principle

λ(T ) =
∂E

∂x
(x(T ))T . adjoint final value.

Solve with so called

◮ gradient methods,

◮ shooting methods, or

◮ collocation.



Indirect Methods

◮ “First optimize, then discretize”

◮ Pros and Cons

+ Boundary value problem with only 2× nx ODE.
+ Can treat large scale systems.
- Only necessary conditions for local optimality.
- Need explicit expression for u∗(t), singular arcs difficult to
treat.

- ODE strongly nonlinear and unstable.
- Inequalities lead to ODE with state dependent switches.

Possible remedy: Use interior point method in function space

inequalities, e.g. Weiser and Deuflhard, Bonnans and

Laurent-Varin

◮ Used for optimal control e.g. by Srinivasan and Bonvin,
Oberle, ...



Direct Methods

◮ “First discretize, then optimize”

◮ Transcribe infinite problem into finite dimensional, Nonlinear
Programming Problem (NLP), and solve NLP.

◮ Pros and Cons:

+ Can use state-of-the-art methods for NLP solution.
+ Can treat inequality constraints and multipoint constraints

much easier.
- Obtains only suboptimal/approximate solution.

◮ Nowadays most commonly used methods due to their easy
applicability and robustness.



Direct Methods Overview

We treat three direct methods:

◮ Direct Single Shooting (sequential simulation and
optimization)

◮ Direct Collocation (simultaneous simulation and optimization)

◮ Direct Multiple Shooting (simultaneous resp. hybrid)



Direct Single Shooting [Hicks and Ray, 1971, Sargent and Sullivan, 1978]

Discretize controls u(t) on fixed grid 0 = t0 < t1 < . . . < tN = T ,

regard states x(t) on [0,T ] as dependent variables.

✻

x0 r

states x(t; q)

discretized controls u(t; q)

q0

q1

qN−1 ✲♣
0 t

♣
T

Use numerical integration to obtain state as function x(t; q) of
finitely many control parameters q = (q0, q1, . . . , qN−1)



NLP in Direct Single Shooting

After control discretization and numerical ODE solution, obtain
NLP:

minimize
q

∫ T

0
L(x(t; q), u(t; q)) dt + E (x(T ; q))

subject to

h(x(ti ; q), u(ti ; q)) ≥ 0,
i = 0, . . . ,N,

(discretized path constraints)

r (x(T ; q)) ≥ 0. (terminal constraints)

Solve with finite dimensional optimization solver, e.g. Sequential
Quadratic Programming (SQP).



Solution by Standard SQP

Summarize problem as

min
q

F (q) s.t. H(q) ≥ 0.

Solve e.g. by Sequential Quadratic Programming (SQP), starting
with guess q0 for controls. k := 0

1. Evaluate F (qk),H(qk) by ODE solution, and derivatives!

2. Compute correction ∆qk by solution of QP:

min
∆q

∇F (qk)
T∆q+

1

2
∆qTAk∆q s.t. H(qk)+∇H(qk)T∆q ≥ 0.

3. Perform step qk+1 = qk + αk∆qk with step length αk

determined by line search.



ODE Sensitivities

How to compute the sensitivity
∂x(t; q)

∂q
of a numerical ODE

solution x(t; q) with respect to the controls q?

Four ways:

1. External Numerical Differentiation (END)

2. Variational Differential Equations

3. Automatic Differentiation

4. Internal Numerical Differentiation (IND)



1 - External Numerical Differentiation (END)

Perturb q and call integrator several times to compute derivatives
by finite differences:

x(t; q + ǫei )− x(t; q)

ǫ

Very easy to implement, but several problems:

◮ Relatively expensive, have overhead of error control for each
varied trajectory.

◮ Due to adaptivity, each call might have different discretization
grids: output x(t; q) is not differentiable!

◮ How to chose perturbation stepsize? Rule of thumb:
ǫ =

√
TOL if TOL is integrator tolerance.

◮ Looses half the digits of accuracy. If integrator accuracy has
(typical) value of TOL = 10−4, derivative has only two valid
digits!



2 - Variational Differential Equations

Solve additional matrix differential equation

Ġ =
∂f

∂x
(x , q)G +

∂f

∂q
(x , q), G (0) = 0

Very accurate at reasonable costs, but:

◮ Have to get expressions for ∂f
∂x
(x , q) and ∂f

∂q
(x , q) .

◮ Computed sensitivity is not 100 % identical with derivative of
(discretized) integrator result x(t; q).



3- Automatic Differentiation (AD)

Use Automatic Differentiation (AD) to differentiate each step of
the integration scheme.
Illustration: AD of Euler:

G (tk + h) = G (tk) + h
∂f

∂x
(x(tk), q)G (tk) + h

∂f

∂q
(x(tk), q)

Up to machine precision 100 % identical with derivative of
numerical solution x(t; q), but:

◮ Integrator and right hand side (f (x , q)) need be in same or
compatible computer languages (e.g. C++ when using
ADOL-C)



4 - Internal Numerical Differentiation (IND)

Like END, but evaluate simultaneously all perturbed trajectories
xi with frozen discretization grid.
Illustration: IND of Euler:

xi (tk + hk) = xi (tk) + hk f (xi (tk), q + ǫei )

Up to round-off and linearization errors identical with derivative of
numerical x(t; q), but:

◮ How to chose perturbation stepsize? Rule of thumb:
ǫ =

√
PREC if PREC is machine precision.

Note: adaptivity of nominal trajectory only, reuse of matrix
factorization in implicit methods, so not only more accurate, but
also cheaper than END.



Numerical Test Problem

minimize
x(·),u(·)

∫ 3

0
x(t)2 + u(t)2 dt

subject to

x(0) = x0, (initial value)

ẋ =(1 + x)x + u, t ∈ [0, 3], (ODE model)






1− x(t)
1 + x(t)
1− u(t)
1 + u(t)






≥







0
0
0
0






, t ∈ [0, 3], (bounds)

x(3) = 0. (zero terminal constraint).

Remark: Uncontrollable growth for
(1 + x0)x0 − 1 ≥ 0 ⇔ x0 ≥ 0.618.



Single Shooting Optimization for x0 = 0.05

◮ Choose N = 30 equal control intervals.

◮ Initialize with steady state controls u(t) ≡ 0.

◮ Initial value x0 = 0.05 is the maximum possible, because
initial trajectory explodes otherwise.



Single Shooting: First Iteration



Single Shooting: 2nd Iteration



Single Shooting: 3rd Iteration



Single Shooting: 4th Iteration



Single Shooting: 5th Iteration



Single Shooting: 6th Iteration



Single Shooting: 7th Iteration and Solution



Direct Single Shooting: Pros and Cons

◮ Sequential simulation and optimization.

+ Can use state-of-the-art ODE/DAE solvers.

+ Few degrees of freedom even for large ODE/DAE systems.

+ Active set changes easily treated.

+ Need only initial guess for controls q.

- Cannot use knowledge of x in initialization (e.g. in tracking
problems).

- ODE solution x(t; q) can depend very nonlinearly on q.

- Unstable systems difficult to treat.

◮ Often used in engineering applications e.g. in packages gOPT
(PSE), DYOS (Marquardt), . . .



Direct Collocation (Sketch) [Tsang et al., 1975]

◮ Discretize controls and states on fine grid with node values
si ≈ x(ti ).

◮ Replace infinite ODE

0 = ẋ(t)− f (x(t), u(t)), t ∈ [0,T ]

by finitely many equality constraints

ci (qi , si , si+1) = 0, i = 0, . . . ,N − 1,

e.g. ci (qi , si , si+1) :=
si+1 − si
ti+1 − ti

− f

(
si + si+1

2
, qi

)

◮ Approximate also integrals, e.g.

∫ ti+1

ti

L(x(t), u(t))dt ≈ li (qi , si , si+1) := L

(
si + si+1

2
, qi

)

(ti+1−ti )



NLP in Direct Collocation

After discretization obtain large scale, but sparse NLP:

minimize
s,q

N−1∑

i=0

li (qi , si , si+1) + E (sN)

subject to

s0 − x0 = 0, (fixed initial value)

ci (qi , si , si+1) = 0, i = 0, . . . ,N − 1, (discretized ODE model)

h(si , qi ) ≥ 0, i = 0, . . . ,N, (discretized path constraints)

r (sN) ≥ 0. (terminal constraints)

Solve e.g. with SQP method for sparse problems.



What is a sparse NLP?

General NLP:

min
w

F (w) s.t.

G (w) = 0,

H(w) ≥ 0.

is called sparse if the Jacobians (derivative matrices)

∇wG
T =

∂G

∂w
=

(
∂G

∂wj

)

ij

and ∇wH
T

contain many zero elements.
In SQP methods, this makes QP much cheaper to build and to
solve.



Direct Collocation: Pros and Cons

◮ Simultaneous simulation and optimization.

+ Large scale, but very sparse NLP.

+ Can use knowledge of x in initialization.

+ Can treat unstable systems well.

+ Robust handling of path and terminal constraints.

- Adaptivity needs new grid, changes NLP dimensions.

◮ Successfully used for practical optimal control e.g. by Biegler
and Wächter (IPOPT), Betts, Bock/Schulz (OCPRSQP), v.
Stryk (DIRCOL), ...



Direct Multiple Shooting [Bock and Plitt, 1984]

◮ Discretize controls piecewise on a coarse grid

u(t) = qi for t ∈ [ti , ti+1]

◮ Solve ODE on each interval [ti , ti+1] numerically, starting with
artificial initial value si :

ẋi (t; si , qi ) = f (xi (t; si , qi ), qi ), t ∈ [ti , ti+1],

xi (ti ; si , qi ) = si .

Obtain trajectory pieces xi (t; si , qi ).

◮ Also numerically compute integrals

li (si , qi ) :=

∫ ti+1

ti

L(xi (ti ; si , qi ), qi )dt



Sketch of Direct Multiple Shooting

r r r r r

✻
s0 s1

si si+1

xi (ti+1; si , qi ) 6= si+1

❅
❅❘

r r r r r

✻

qix0 ❢r

✲q

t0

q0
q

t1

q q

ti

q

ti+1

q q

tN−1

r sN−1

q

tN

r sN



NLP in Direct Multiple Shooting

q q q q q q q q q q

✻

❜q

✲♣ ♣ ♣ ♣ ♣ ♣ ♣

q

♣

q

minimize
s,q

N−1∑

i=0

li (si , qi ) + E (sN)

subject to

s0 − x0 = 0, (initial value)

si+1 − xi (ti+1; si , qi ) = 0, i = 0, . . . ,N − 1, (continuity)

h(si , qi ) ≥ 0, i = 0, . . . ,N, (discretized path constraints)

r (sN) ≥ 0. (terminal constraints)



Structured NLP

◮ Summarize all variables as w := (s0, q0, s1, q1, . . . , sN).

◮ Obtain structured NLP

min
w

F (w) s.t.

{
G (w) = 0
H(w) ≥ 0.

◮ Jacobian ∇G (wk)T contains dynamic model equations.

◮ Jacobians and Hessian of NLP are block sparse, can be
exploited in numerical solution procedure.



Test Example: Initialization with u(t) ≡ 0

Single shooting:



Multiple Shooting: First Iteration

Single shooting:



Multiple Shooting: 2nd Iteration

Single shooting:



Multiple Shooting: 3rd Iteration and Solution

Single shooting:



Direct Multiple Shooting: Pros and Cons

◮ Simultaneous simulation and optimization.

+ uses adaptive ODE/DAE solvers

+ but NLP has fixed dimensions

+ can use knowledge of x in initialization (here bounds;
more important in online context).

+ can treat unstable systems well.

+ robust handling of path and terminal constraints.

+ easy to parallelize.

- not as sparse as collocation.

◮ Used for practical optimal control e.g by Franke
(“HQP”), Terwen (DaimlerChrysler); Santos and
Biegler; Bock et al. (“MUSCOD-II”)



Conclusions: Optimal Control Family Tree

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

✏✏✏✏✏✏✏✏✏

✁
✁
✁Hamilton-Jacobi-

Bellman Equation:
Tabulation in
State Space

Indirect Methods,
Pontryagin:

Solve Boundary
Value Problem

Direct Methods:
Transform into

Nonlinear Program
(NLP)
✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

✏✏✏✏✏✏✏✏✏

✁
✁
✁

Single Shooting:
Only discretized
controls in NLP
(sequential)

Collocation:
Discretized controls
and states in NLP
(simultaneous)

Multiple Shooting:
Controls and node
start values in NLP

(simultaneous/hybrid)



Literature

◮ T. Binder, L. Blank, H. G. Bock, R. Bulirsch, W. Dahmen, M.
Diehl, T. Kronseder, W. Marquardt and J. P. Schler, and O.
v. Stryk: Introduction to Model Based Optimization of
Chemical Processes on Moving Horizons. In Grötschel,
Krumke, Rambau (eds.): Online Optimization of Large Scale
Systems: State of the Art, Springer, 2001. pp. 295–340.

◮ John T. Betts: Practical Methods for Optimal Control Using
Nonlinear Programming. SIAM, Philadelphia, 2001. ISBN
0-89871-488-5

◮ Dimitri P. Bertsekas: Dynamic Programming and Optimal
Control. Athena Scientific, Belmont, 2000 (Vol I, ISBN:
1-886529-09-4) & 2001 (Vol II, ISBN: 1-886529-27-2)

◮ A. E. Bryson and Y. C. Ho: Applied Optimal Control,
Hemisphere/Wiley, 1975.



Bertsekas, D. and Tsitsiklis, J. (1996).
Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA.

Betts, J. (2001).
Practical Methods for Optimal Control Using Nonlinear
Programming.
SIAM, Philadelphia.

Bock, H. and Plitt, K. (1984).
A multiple shooting algorithm for direct solution of optimal
control problems.
In Proceedings 9th IFAC World Congress Budapest, pages
242–247. Pergamon Press.

Hicks, G. and Ray, W. (1971).
Approximation methods for optimal control systems.
Can. J. Chem. Engng., 49:522–528.

Sargent, R. and Sullivan, G. (1978).
The development of an efficient optimal control package.



In Stoer, J., editor, Proceedings of the 8th IFIP Conference on
Optimization Techniques (1977), Part 2, Heidelberg. Springer.

Tsang, T., Himmelblau, D., and Edgar, T. (1975).
Optimal control via collocation and non-linear programming.
International Journal on Control, 21:763–768.


