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Simplified Optimal Control Problem in ODE

terminal
constraint r(x(T )) ≥ 0

✻
path constraints h(x, u) ≥ 0

initial value
x0 r

states x(t)

controls u(t)
✲♣

0 t

♣
T

minimize
x(·),u(·)

∫ T

0
L(x(t), u(t)) dt + E (x(T ))

subject to

x(0)− x0 = 0, (fixed initial value)

ẋ(t)−f (x(t), u(t)) = 0, t ∈ [0,T ], (ODE model)

h(x(t), u(t)) ≥ 0, t ∈ [0,T ], (path constraints)

r (x(T )) ≥ 0 (terminal constraints)



More general optimal control problems

Many features left out here for simplicity of presentation:

◮ multiple dynamic stages

◮ differential algebraic equations (DAE) instead of ODE

◮ explicit time dependence

◮ constant design parameters

◮ multipoint constraints r(x(t0), x(t1), . . . , x(tend)) = 0



Optimal Control Family Tree

Three basic families: [Betts, 2001]

◮ Hamilton-Jacobi-Bellmann equation / dynamic
programming

◮ Indirect Methods / calculus of variations / Pontryagin

◮ Direct Methods (control discretization)



Principle of Optimality

Any subarc of an optimal trajectory is also optimal.

✻
intermediate
value x̄

s

initial
value x0

s

states x(t)

optimal
controls u(t)

✲♣

0 t̄
♣

T

Subarc on [t̄,T ] is optimal solution for initial
value x̄ .



Dynamic Programming Cost-to-go

IDEA:

◮ Introduce optimal-cost-to-go function on [t̄,T ]

J(x̄ , t̄) := min
x ,u

∫ T

t̄

L(x , u)dt + E (x(T )) s.t. x(t̄) = x̄ , . . .

◮ Introduce grid 0 = t0 < . . . < tN = T .

◮ Use principle of optimality on intervals [tk , tk+1]:

J(xk , tk) = min
x ,u

∫ tk+1

tk

L(x , u)dt + J(x(tk+1), tk+1)

s.t. x(tk) = xk , . . .

xkr x(tk+1)r

✲
tk+1tk

♣

T



Dynamic Programming Recursion

Starting from J(x , tN) = E (x), compute recursively backwards, for
k = N − 1, . . . , 0

J(xk , tk) := min
x ,u

∫ tk+1

tk

L(x , u)dt + J(x(tk+1), tk+1) s.t. x(tk) = xk , . . .

by solution of short horizon problems for all possible xk and
tabulation in state space.
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❅
❅❘

✻

J(·, tN)

xN
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✻
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Dynamic Programming Recursion

Starting from J(x , tN) = E (x), compute recursively backwards, for
k = N − 1, . . . , 0

J(xk , tk) := min
x ,u

∫ tk+1

tk

L(x , u)dt + J(x(tk+1), tk+1) s.t. x(tk) = xk , . . .

by solution of short horizon problems for all possible xk and
tabulation in state space.

❅
❅❘

✻

J(·, tN)

xN
❅
❅❘

✻

J(·, tN−1)

xN−1

· · ·

❅
❅❘

✻

J(·, t0)

x0



Hamilton-Jacobi-Bellman (HJB) Equation

◮ Dynamic Programming with infinitely small timesteps leads to
Hamilton-Jacobi-Bellman (HJB) Equation:

−∂J

∂t
(x , t) = min

u

(

L(x , u) +
∂J

∂x
(x , t)f (x , u)

)

s.t. h(x , u) ≥ 0.

◮ Solve this partial differential equation (PDE) backwards for
t ∈ [0,T ], starting at the end of the horizon with

J(x ,T ) = E (x).

◮ NOTE: Optimal controls for state x at time t are obtained
from

u∗(x , t) = argmin
u

(

L(x , u) +
∂J

∂x
(x , t)f (x , u)

)

s.t. h(x , u) ≥ 0.



Dynamic Programming / HJB

◮ “Dynamic Programming” applies to discrete time,
“HJB” to continuous time systems.

◮ Pros and Cons

+ Searches whole state space, finds global optimum.
+ Optimal feedback controls precomputed.
+ Analytic solution to some problems possible (linear systems

with quadratic cost → Riccati Equation)

◮ “Viscosity solutions” (Lions et al.) exist for quite general
nonlinear problems.

- But: in general intractable, because partial differential
equation (PDE) in high dimensional state space: “curse of
dimensionality”.

◮ Possible remedy: Approximate J e.g. in framework of
neuro-dynamic programming [Bertsekas and Tsitsiklis, 1996].

◮ Used for practical optimal control of small scale systems e.g.
by Bonnans, Zidani, Lee, Back, ...



Indirect Methods

For simplicity, regard only problem without inequality constraints:

terminal
cost E(x(T ))

✻

initial value
x0 r

states x(t)

controls u(t)
✲♣

0 t

♣
T

minimize
x(·),u(·)

∫ T

0
L(x(t), u(t)) dt + E (x(T ))

subject to

x(0)− x0 = 0, (fixed initial value)

ẋ(t)−f (x(t), u(t)) = 0, t ∈ [0,T ], (ODE model)



Pontryagin’s Minimum Principle

OBSERVATION: In HJB, optimal controls

u∗(t) = argmin
u

(

L(x , u) +
∂J

∂x
(x , t)f (x , u)

)

depend only on derivative ∂J
∂x
(x , t), not on J itself!

IDEA: Introduce adjoint variables

λ(t) =̂
∂J

∂x
(x(t), t)T ∈ R

nx

and get controls from Pontryagin’s Minimum Principle

u∗(t, x , λ) = argmin
u




 L(x , u) + λT f (x , u)

︸ ︷︷ ︸

Hamiltonian=:H(x ,u,λ)






QUESTION: How to obtain λ(t)?



Adjoint Differential Equation

◮ Differentiate HJB Equation

−∂J

∂t
(x , t) = min

u
H(x , u,

∂J

∂x
(x , t)T )

with respect to x and obtain:

−λ̇T =
∂

∂x
(H(x(t), u∗(t, x , λ), λ(t))) .

◮ Likewise, differentiate J(x ,T ) = E (x) and obtain terminal
condition

λ(T )T =
∂E

∂x
(x(T )).



How to obtain explicit expression for controls?

◮ In simplest case,

u∗(t) = argmin
u

H(x(t), u, λ(t))

is defined by
∂H

∂u
(x(t), u∗(t), λ(t)) = 0

(Calculus of Variations, Euler-Lagrange).

◮ In presence of path constraints, expression for u∗(t) changes
whenever active constraints change. This leads to state
dependent switches.

◮ If minimum of Hamiltonian locally not unique, “singular arcs”
occur. Treatment needs higher order derivatives of H.



Necessary Optimality Conditions

Summarize optimality conditions as boundary value problem:

x(0) = x0, initial value

ẋ(t) = f (x(t), u∗(t)), t ∈ [0,T ], ODE model

−λ̇(t) =
∂H

∂x
(x(t), u∗(t), λ(t))T , t ∈ [0,T ], adjoint equations

u∗(t) = argmin
u

H(x(t), u, λ(t)), t ∈ [0,T ], minimum principle

λ(T ) =
∂E

∂x
(x(T ))T . adjoint final value.

Solve with so called

◮ gradient methods,

◮ shooting methods, or

◮ collocation.



Indirect Methods

◮ “First optimize, then discretize”

◮ Pros and Cons

+ Boundary value problem with only 2× nx ODE.
+ Can treat large scale systems.
- Only necessary conditions for local optimality.
- Need explicit expression for u∗(t), singular arcs difficult to
treat.

- ODE strongly nonlinear and unstable.
- Inequalities lead to ODE with state dependent switches.

Possible remedy: Use interior point method in function space

inequalities, e.g. Weiser and Deuflhard, Bonnans and

Laurent-Varin

◮ Used for optimal control e.g. by Srinivasan and Bonvin,
Oberle, ...



Direct Methods

◮ “First discretize, then optimize”

◮ Transcribe infinite problem into finite dimensional, Nonlinear
Programming Problem (NLP), and solve NLP.

◮ Pros and Cons:

+ Can use state-of-the-art methods for NLP solution.
+ Can treat inequality constraints and multipoint constraints

much easier.
- Obtains only suboptimal/approximate solution.

◮ Nowadays most commonly used methods due to their easy
applicability and robustness.



Direct Methods Overview

We treat three direct methods:

◮ Direct Single Shooting (sequential simulation and
optimization)

◮ Direct Collocation (simultaneous simulation and optimization)

◮ Direct Multiple Shooting (simultaneous resp. hybrid)



Direct Single Shooting [Hicks and Ray, 1971, Sargent and Sullivan, 1978]

Discretize controls u(t) on fixed grid 0 = t0 < t1 < . . . < tN = T ,

regard states x(t) on [0,T ] as dependent variables.

✻

x0 r

states x(t; q)

discretized controls u(t; q)

q0

q1

qN−1 ✲♣
0 t

♣
T

Use numerical integration to obtain state as function x(t; q) of
finitely many control parameters q = (q0, q1, . . . , qN−1)



NLP in Direct Single Shooting

After control discretization and numerical ODE solution, obtain
NLP:

minimize
q

∫ T

0
L(x(t; q), u(t; q)) dt + E (x(T ; q))

subject to

h(x(ti ; q), u(ti ; q)) ≥ 0,
i = 0, . . . ,N,

(discretized path constraints)

r (x(T ; q)) ≥ 0. (terminal constraints)

Solve with finite dimensional optimization solver, e.g. Sequential
Quadratic Programming (SQP).



Solution by Standard SQP

Summarize problem as

min
q

F (q) s.t. H(q) ≥ 0.

Solve e.g. by Sequential Quadratic Programming (SQP), starting
with guess q0 for controls. k := 0

1. Evaluate F (qk),H(qk) by ODE solution, and derivatives!

2. Compute correction ∆qk by solution of QP:

min
∆q

∇F (qk)
T∆q+

1

2
∆qTAk∆q s.t. H(qk)+∇H(qk)T∆q ≥ 0.

3. Perform step qk+1 = qk + αk∆qk with step length αk

determined by line search.



ODE Sensitivities

How to compute the sensitivity
∂x(t; q)

∂q
of a numerical ODE

solution x(t; q) with respect to the controls q?

Four ways:

1. External Numerical Differentiation (END)

2. Variational Differential Equations

3. Automatic Differentiation

4. Internal Numerical Differentiation (IND)



1 - External Numerical Differentiation (END)

Perturb q and call integrator several times to compute derivatives
by finite differences:

x(t; q + ǫei )− x(t; q)

ǫ

Very easy to implement, but several problems:

◮ Relatively expensive, have overhead of error control for each
varied trajectory.

◮ Due to adaptivity, each call might have different discretization
grids: output x(t; q) is not differentiable!

◮ How to chose perturbation stepsize? Rule of thumb:
ǫ =

√
TOL if TOL is integrator tolerance.

◮ Looses half the digits of accuracy. If integrator accuracy has
(typical) value of TOL = 10−4, derivative has only two valid
digits!



2 - Variational Differential Equations

Solve additional matrix differential equation

Ġ =
∂f

∂x
(x , q)G +

∂f

∂q
(x , q), G (0) = 0

Very accurate at reasonable costs, but:

◮ Have to get expressions for ∂f
∂x
(x , q) and ∂f

∂q
(x , q) .

◮ Computed sensitivity is not 100 % identical with derivative of
(discretized) integrator result x(t; q).



3- Automatic Differentiation (AD)

Use Automatic Differentiation (AD) to differentiate each step of
the integration scheme.
Illustration: AD of Euler:

G (tk + h) = G (tk) + h
∂f

∂x
(x(tk), q)G (tk) + h

∂f

∂q
(x(tk), q)

Up to machine precision 100 % identical with derivative of
numerical solution x(t; q), but:

◮ Integrator and right hand side (f (x , q)) need be in same or
compatible computer languages (e.g. C++ when using
ADOL-C)



4 - Internal Numerical Differentiation (IND)

Like END, but evaluate simultaneously all perturbed trajectories
xi with frozen discretization grid.
Illustration: IND of Euler:

xi (tk + hk) = xi (tk) + hk f (xi (tk), q + ǫei )

Up to round-off and linearization errors identical with derivative of
numerical x(t; q), but:

◮ How to chose perturbation stepsize? Rule of thumb:
ǫ =

√
PREC if PREC is machine precision.

Note: adaptivity of nominal trajectory only, reuse of matrix
factorization in implicit methods, so not only more accurate, but
also cheaper than END.



Numerical Test Problem

minimize
x(·),u(·)

∫ 3

0
x(t)2 + u(t)2 dt

subject to

x(0) = x0, (initial value)

ẋ =(1 + x)x + u, t ∈ [0, 3], (ODE model)






1− x(t)
1 + x(t)
1− u(t)
1 + u(t)






≥







0
0
0
0






, t ∈ [0, 3], (bounds)

x(3) = 0. (zero terminal constraint).

Remark: Uncontrollable growth for
(1 + x0)x0 − 1 ≥ 0 ⇔ x0 ≥ 0.618.



Single Shooting Optimization for x0 = 0.05

◮ Choose N = 30 equal control intervals.

◮ Initialize with steady state controls u(t) ≡ 0.

◮ Initial value x0 = 0.05 is the maximum possible, because
initial trajectory explodes otherwise.



Single Shooting: First Iteration



Single Shooting: 2nd Iteration



Single Shooting: 3rd Iteration



Single Shooting: 4th Iteration



Single Shooting: 5th Iteration



Single Shooting: 6th Iteration



Single Shooting: 7th Iteration and Solution



Direct Single Shooting: Pros and Cons

◮ Sequential simulation and optimization.

+ Can use state-of-the-art ODE/DAE solvers.

+ Few degrees of freedom even for large ODE/DAE systems.

+ Active set changes easily treated.

+ Need only initial guess for controls q.

- Cannot use knowledge of x in initialization (e.g. in tracking
problems).

- ODE solution x(t; q) can depend very nonlinearly on q.

- Unstable systems difficult to treat.

◮ Often used in engineering applications e.g. in packages gOPT
(PSE), DYOS (Marquardt), . . .



Direct Collocation (Sketch) [Tsang et al., 1975]

◮ Discretize controls and states on fine grid with node values
si ≈ x(ti ).

◮ Replace infinite ODE

0 = ẋ(t)− f (x(t), u(t)), t ∈ [0,T ]

by finitely many equality constraints

ci (qi , si , si+1) = 0, i = 0, . . . ,N − 1,

e.g. ci (qi , si , si+1) :=
si+1 − si
ti+1 − ti

− f

(
si + si+1

2
, qi

)

◮ Approximate also integrals, e.g.

∫ ti+1

ti

L(x(t), u(t))dt ≈ li (qi , si , si+1) := L

(
si + si+1

2
, qi

)

(ti+1−ti )



NLP in Direct Collocation

After discretization obtain large scale, but sparse NLP:

minimize
s,q

N−1∑

i=0

li (qi , si , si+1) + E (sN)

subject to

s0 − x0 = 0, (fixed initial value)

ci (qi , si , si+1) = 0, i = 0, . . . ,N − 1, (discretized ODE model)

h(si , qi ) ≥ 0, i = 0, . . . ,N, (discretized path constraints)

r (sN) ≥ 0. (terminal constraints)

Solve e.g. with SQP method for sparse problems.



What is a sparse NLP?

General NLP:

min
w

F (w) s.t.

G (w) = 0,

H(w) ≥ 0.

is called sparse if the Jacobians (derivative matrices)

∇wG
T =

∂G

∂w
=

(
∂G

∂wj

)

ij

and ∇wH
T

contain many zero elements.
In SQP methods, this makes QP much cheaper to build and to
solve.



Direct Collocation: Pros and Cons

◮ Simultaneous simulation and optimization.

+ Large scale, but very sparse NLP.

+ Can use knowledge of x in initialization.

+ Can treat unstable systems well.

+ Robust handling of path and terminal constraints.

- Adaptivity needs new grid, changes NLP dimensions.

◮ Successfully used for practical optimal control e.g. by Biegler
and Wächter (IPOPT), Betts, Bock/Schulz (OCPRSQP), v.
Stryk (DIRCOL), ...



Direct Multiple Shooting [Bock and Plitt, 1984]

◮ Discretize controls piecewise on a coarse grid

u(t) = qi for t ∈ [ti , ti+1]

◮ Solve ODE on each interval [ti , ti+1] numerically, starting with
artificial initial value si :

ẋi (t; si , qi ) = f (xi (t; si , qi ), qi ), t ∈ [ti , ti+1],

xi (ti ; si , qi ) = si .

Obtain trajectory pieces xi (t; si , qi ).

◮ Also numerically compute integrals

li (si , qi ) :=

∫ ti+1

ti

L(xi (ti ; si , qi ), qi )dt



Sketch of Direct Multiple Shooting

r r r r r

✻
s0 s1

si si+1

xi (ti+1; si , qi ) 6= si+1

❅
❅❘

r r r r r

✻

qix0 ❢r

✲q

t0

q0
q

t1

q q

ti

q

ti+1

q q

tN−1

r sN−1

q

tN

r sN



NLP in Direct Multiple Shooting

q q q q q q q q q q

✻

❜q

✲♣ ♣ ♣ ♣ ♣ ♣ ♣

q

♣

q

minimize
s,q

N−1∑

i=0

li (si , qi ) + E (sN)

subject to

s0 − x0 = 0, (initial value)

si+1 − xi (ti+1; si , qi ) = 0, i = 0, . . . ,N − 1, (continuity)

h(si , qi ) ≥ 0, i = 0, . . . ,N, (discretized path constraints)

r (sN) ≥ 0. (terminal constraints)



Structured NLP

◮ Summarize all variables as w := (s0, q0, s1, q1, . . . , sN).

◮ Obtain structured NLP

min
w

F (w) s.t.

{
G (w) = 0
H(w) ≥ 0.

◮ Jacobian ∇G (wk)T contains dynamic model equations.

◮ Jacobians and Hessian of NLP are block sparse, can be
exploited in numerical solution procedure.



Test Example: Initialization with u(t) ≡ 0

Single shooting:



Multiple Shooting: First Iteration

Single shooting:



Multiple Shooting: 2nd Iteration

Single shooting:



Multiple Shooting: 3rd Iteration and Solution

Single shooting:



Direct Multiple Shooting: Pros and Cons

◮ Simultaneous simulation and optimization.

+ uses adaptive ODE/DAE solvers

+ but NLP has fixed dimensions

+ can use knowledge of x in initialization (here bounds;
more important in online context).

+ can treat unstable systems well.

+ robust handling of path and terminal constraints.

+ easy to parallelize.

- not as sparse as collocation.

◮ Used for practical optimal control e.g by Franke
(“HQP”), Terwen (DaimlerChrysler); Santos and
Biegler; Bock et al. (“MUSCOD-II”)



Conclusions: Optimal Control Family Tree

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

✏✏✏✏✏✏✏✏✏

✁
✁
✁Hamilton-Jacobi-

Bellman Equation:
Tabulation in
State Space

Indirect Methods,
Pontryagin:

Solve Boundary
Value Problem

Direct Methods:
Transform into

Nonlinear Program
(NLP)
✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

✏✏✏✏✏✏✏✏✏

✁
✁
✁

Single Shooting:
Only discretized
controls in NLP
(sequential)

Collocation:
Discretized controls
and states in NLP
(simultaneous)

Multiple Shooting:
Controls and node
start values in NLP

(simultaneous/hybrid)
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