
Simulation methods for differential equations

Rien Quirynen

August 6, 2014

1 / 34

Introduction

The system of interest:

?
inputs outputs

dynamic model:

deterministic set of differential equations ()

2 / 34

Introduction

The system of interest:

?
inputs outputs

dynamic model:

deterministic set of differential equations ()

2 / 34

Introduction

The system of interest:

?
inputs outputs

dynamic model:

deterministic set of differential equations (ODE/DAE/PDE)

2 / 34

Introduction

The system of interest:

?
inputs outputs

dynamic model:

deterministic set of differential equations (ODE/DAE/PDE)

2 / 34

Introduction

The system of interest:

?

ẋ(t) = f (t, x(t), u(t))
0 0.5 1 1.5 2 2.5 3 3.5 4

−20

−15

−10

−5

0

5

10

15

20

u

time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4

−1

0

1

2

3

4

5

y

time (s)

3 / 34

Introduction

The system of interest:

ẋ(t) = f (t, x(t),u(t))

0 0.5 1 1.5 2 2.5 3 3.5 4
−20

−15

−10

−5

0

5

10

15

20

u

time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4

−1

0

1

2

3

4

5

y

time (s)

3 / 34

Introduction

The system of interest:

ẋ(t) = f (t, x(t),u(t))
0 0.5 1 1.5 2 2.5 3 3.5 4

−20

−15

−10

−5

0

5

10

15

20

u

time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

5

y

time (s)

3 / 34

Introduction

The system of interest:

ẋ(t) = f (t, x(t),u(t))
0 0.5 1 1.5 2 2.5 3 3.5 4

−20

−15

−10

−5

0

5

10

15

20

u

time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4

−1

0

1

2

3

4

5

y

time (s)

3 / 34

Introduction: IVP

THEOREM [Picard 1890, Lindelöf 1894]:

Initial value problem in ODE

ẋ(t) = f (t, x(t), u(t), p), t ∈ [t0, tend],

x(t0) = x0

I with given initial state x0, parameters p, and controls u(t),
I and Lipschitz continuous f (t, x(t), u(t), p)

has unique solution

x(t), t ∈ [t0, tend]

4 / 34

Introduction: IVP

THEOREM [Picard 1890, Lindelöf 1894]:

Initial value problem in ODE

ẋ(t) = f (t, x(t), u(t), p), t ∈ [t0, tend],

x(t0) = x0

I with given initial state x0, parameters p, and controls u(t),
I and Lipschitz continuous f (t, x(t), u(t), p)

has unique solution

x(t), t ∈ [t0, tend]

4 / 34

Introduction: numerical simulation

Aim of numerical simulation:

Compute x(t), t ∈ [t0, tend] which approximately satisfies

ẋ(t) = f (t, x(t), u(t), p), t ∈ [t0, tend],

x(t0) = x0,

and z(t) in case of index-1 DAE

ẋ(t) = f (t, x(t), z(t), u(t), p),

0 = g(t, x(t), z(t), u(t), p), t ∈ [t0, tend],

x(t0) = x0

NOTE: interested in values at discrete times ti ∈ [t0, tend],
especially t = tend

5 / 34

Introduction: numerical simulation

Let us define the exact trajectory x(t), t ∈ [t0, tend] and a set of
discrete time steps t0, t1, . . .

Local error:

e(ti) = x(ti)− x(ti ; ti−1, x(ti−1))

Global error or “transported error”:

E (ti) = x(ti)− x(ti ; t0, x0)

6 / 34

Introduction: numerical simulation

Let us define the exact trajectory x(t), t ∈ [t0, tend] and a set of
discrete time steps t0, t1, . . .

Local error:

e(ti) = x(ti)− x(ti ; ti−1, x(ti−1))

Global error or “transported error”:

E (ti) = x(ti)− x(ti ; t0, x0)

6 / 34

Introduction: numerical simulation

Let us define the exact trajectory x(t), t ∈ [t0, tend] and a set of
discrete time steps t0, t1, . . .

Local error:

e(ti) = x(ti)− x(ti ; ti−1, x(ti−1))

Global error or “transported error”:

E (ti) = x(ti)− x(ti ; t0, x0)

6 / 34

Introduction: important properties

Let us define the stepsize h such that ti+1 = ti + h

convergence: A method is convergent when its values
converge to the exact solution for h→ 0.

order: The method has order p if the local error

lim
h→0

e(ti) = O(hp+1)

NOTE: consistency when p > 0 (necessary for convergence)

stability: ‘damping’ of errors, see stiffness

7 / 34

Introduction: important properties

Let us define the stepsize h such that ti+1 = ti + h

convergence: A method is convergent when its values
converge to the exact solution for h→ 0.

order: The method has order p if the local error

lim
h→0

e(ti) = O(hp+1)

NOTE: consistency when p > 0 (necessary for convergence)

stability: ‘damping’ of errors, see stiffness

7 / 34

Introduction: important properties

Let us define the stepsize h such that ti+1 = ti + h

convergence: A method is convergent when its values
converge to the exact solution for h→ 0.

order: The method has order p if the local error

lim
h→0

e(ti) = O(hp+1)

NOTE: consistency when p > 0 (necessary for convergence)

stability: ‘damping’ of errors, see stiffness

7 / 34

Introduction: important properties

Let us define the stepsize h such that ti+1 = ti + h

convergence: A method is convergent when its values
converge to the exact solution for h→ 0.

order: The method has order p if the local error

lim
h→0

e(ti) = O(hp+1)

NOTE: consistency when p > 0 (necessary for convergence)

stability: ‘damping’ of errors, see stiffness

7 / 34

Introduction: important properties

Let us define the stepsize h such that ti+1 = ti + h

convergence: A method is convergent when its values
converge to the exact solution for h→ 0. → minimum!

order: The method has order p if the local error

lim
h→0

e(ti) = O(hp+1)

NOTE: consistency when p > 0 (necessary for convergence)

stability: ‘damping’ of errors, see stiffness

7 / 34

Overview

Classes of numerical methods:

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Linear Multistep

8 / 34

Overview

Classes of numerical methods:

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Linear Multistep

8 / 34

Overview

Classes of numerical methods:

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Linear Multistep

8 / 34

Overview

Classes of numerical methods:

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Linear Multistep

8 / 34

Overview

Classes of numerical methods:

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Linear Multistep

8 / 34

Overview

Classes of numerical methods:

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Linear Multistep

8 / 34

Multistep methods

Each method takes a step forward in time to find the next solution
point, but this can be based either:

I on the previous point and its derivative, often with
intermediate steps (see Runge-Kutta)

I on a certain amount of previous points and their derivatives

⇒ good starting procedure needed!

9 / 34

Multistep methods

Each method takes a step forward in time to find the next solution
point, but this can be based either:

I on the previous point and its derivative, often with
intermediate steps (see Runge-Kutta)

I on a certain amount of previous points and their derivatives

⇒ good starting procedure needed!

9 / 34

Multistep methods

Each method takes a step forward in time to find the next solution
point, but this can be based either:

I on the previous point and its derivative, often with
intermediate steps (see Runge-Kutta)

I on a certain amount of previous points and their derivatives

⇒ good starting procedure needed!

9 / 34

Multistep methods

Each method takes a step forward in time to find the next solution
point, but this can be based either:

I on the previous point and its derivative, often with
intermediate steps (see Runge-Kutta)

I on a certain amount of previous points and their derivatives

⇒ good starting procedure needed!

9 / 34

Linear multistep methods

Let us consider the simplified system ẋ(t) = f (t, x(t)).

A s-step LM method then uses xi , fi = f (ti , xi) for
i = n − s, . . . , n − 1 to compute xn ≈ x(tn):

xn + as−1xn−1 + . . . + a0xn−s =

h (bs fn + bs−1fn−1 + . . . + b0fn−s)

explicit (bs = 0) ↔ implicit (bs 6= 0)

Three main families:

I Adams-Bashforth (explicit)

I Adams-Moulton (implicit)

I Backward differentiation formulas (BDF)

10 / 34

Linear multistep methods

Let us consider the simplified system ẋ(t) = f (t, x(t)).

A s-step LM method then uses xi , fi = f (ti , xi) for
i = n − s, . . . , n − 1 to compute xn ≈ x(tn):

xn + as−1xn−1 + . . . + a0xn−s =

h
(
bs fn + bs−1fn−1 + . . . + b0fn−s

)
explicit (bs = 0) ↔ implicit (bs 6= 0)

Three main families:

I Adams-Bashforth (explicit)

I Adams-Moulton (implicit)

I Backward differentiation formulas (BDF)

10 / 34

Linear multistep methods

Let us consider the simplified system ẋ(t) = f (t, x(t)).

A s-step LM method then uses xi , fi = f (ti , xi) for
i = n − s, . . . , n − 1 to compute xn ≈ x(tn):

xn + as−1xn−1 + . . . + a0xn−s =

h
(
bs fn + bs−1fn−1 + . . . + b0fn−s

)
explicit (bs = 0) ↔ implicit (bs 6= 0)

Three main families:

I Adams-Bashforth (explicit)

I Adams-Moulton (implicit)

I Backward differentiation formulas (BDF)

10 / 34

Linear multistep methods: Adams

Let us consider the time step in integrated form

x(tn) = x(tn−1) +

∫ tn

tn−1

f (t, x(t))dt

in which Adams approximates f (t, x(t)) by the interpolating
polynomial through (xi , fi) for i = n − s, . . . , n − 1.

11 / 34

Linear multistep methods: Adams

Let us consider the time step in integrated form

x(tn) = x(tn−1) +

∫ tn

tn−1

f (t, x(t))dt

in which Adams approximates f (t, x(t)) by the interpolating
polynomial through (xi , fi) for i = n − s, . . . , n − 1.

11 / 34

Linear multistep methods: Adams

Let us consider the time step in integrated form

x(tn) = x(tn−1) +

∫ tn

tn−1

f (t, x(t))dt

in which Adams approximates f (t, x(t)) by the interpolating
polynomial through (xi , fi) for i = n − s, . . . , n − 1.

Explicit examples:

I s = 1 : xn = xn−1 + h fn−1 (Euler)

I s = 2 : xn = xn−1 + h
(
3
2 fn−1 −

1
2 fn−2

)
I . . .

11 / 34

Linear multistep methods: Adams

Let us consider the time step in integrated form

x(tn) = x(tn−1) +

∫ tn

tn−1

f (t, x(t))dt

in which Adams approximates f (t, x(t)) by the interpolating
polynomial through (xi , fi) for i = n − s, . . . , n − 1.

Implicit examples:

I s = 0 : xn = xn−1 + h fn (implicit Euler)

I s = 1 : xn = xn−1 + h
(
1
2 fn + 1

2 fn−1
)

(trapezoidal)

I s = 2 : xn = xn−1 + h
(

5
12 fn + 8

12 fn−1 −
1
12 fn−2

)
I . . .

11 / 34

Linear multistep methods: Adams

Let us consider the time step in integrated form

x(tn) = x(tn−1) +

∫ tn

tn−1

f (t, x(t))dt

in which Adams approximates f (t, x(t)) by the interpolating
polynomial through (xi , fi) for i = n − s, . . . , n − 1.

Implicit examples:

I s = 0 : xn = xn−1 + h fn (implicit Euler)

I s = 1 : xn = xn−1 + h
(
1
2 fn + 1

2 fn−1
)

(trapezoidal)

I s = 2 : xn = xn−1 + h
(

5
12 fn + 8

12 fn−1 −
1
12 fn−2

)
I . . .

NOTE: implicit methods include (xn, fn) ⇒ nonlinear system

11 / 34

Linear multistep methods: BDF

numerical integration ↔ numerical differentiation

Let us again consider the interpolating polynomial q(x) through
(xi , fi) for i = n − s, . . . ,n (implicit!) on which we impose

q̇(xn) = f (tn, xn)

to obtain xn as the solution of this nonlinear system.

All BDF methods are implicit, some examples:

I s = 1 : xn − xn−1 = h fn (implicit Euler)

I s = 2 : 3
2xn − 2xn−1 + 1

2xn−2 = h fn
I . . .

NOTE: widely used for stiff systems !!

12 / 34

Linear multistep methods: BDF

numerical integration ↔ numerical differentiation

Let us again consider the interpolating polynomial q(x) through
(xi , fi) for i = n − s, . . . ,n (implicit!) on which we impose

q̇(xn) = f (tn, xn)

to obtain xn as the solution of this nonlinear system.

All BDF methods are implicit, some examples:

I s = 1 : xn − xn−1 = h fn (implicit Euler)

I s = 2 : 3
2xn − 2xn−1 + 1

2xn−2 = h fn
I . . .

NOTE: widely used for stiff systems !!

12 / 34

Linear multistep methods: BDF

numerical integration ↔ numerical differentiation

Let us again consider the interpolating polynomial q(x) through
(xi , fi) for i = n − s, . . . ,n (implicit!) on which we impose

q̇(xn) = f (tn, xn)

to obtain xn as the solution of this nonlinear system.

All BDF methods are implicit, some examples:

I s = 1 : xn − xn−1 = h fn (implicit Euler)

I s = 2 : 3
2xn − 2xn−1 + 1

2xn−2 = h fn
I . . .

NOTE: widely used for stiff systems !!

12 / 34

Linear multistep methods: BDF

numerical integration ↔ numerical differentiation

Let us again consider the interpolating polynomial q(x) through
(xi , fi) for i = n − s, . . . ,n (implicit!) on which we impose

q̇(xn) = f (tn, xn)

to obtain xn as the solution of this nonlinear system.

All BDF methods are implicit, some examples:

I s = 1 : xn − xn−1 = h fn (implicit Euler)

I s = 2 : 3
2xn − 2xn−1 + 1

2xn−2 = h fn
I . . .

NOTE: widely used for stiff systems !!

12 / 34

Intermezzo: stiffness1

“... stiff equations are equations where certain implicit
methods, in paricular BDF, perform better, usually
tremendously better, than explicit ones.”

- (Curtiss & Hirschfelder, 1952)

“... Around 1960, things became completely different and
everyone became aware that the world was full of stiff
problems.”

- (G. Dahlquist, 1985)

1Hairer and Wanner, Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic Problems.

13 / 34

Intermezzo: stiffness1

“... stiff equations are equations where certain implicit
methods, in paricular BDF, perform better, usually
tremendously better, than explicit ones.”

- (Curtiss & Hirschfelder, 1952)

“... Around 1960, things became completely different and
everyone became aware that the world was full of stiff
problems.”

- (G. Dahlquist, 1985)

1Hairer and Wanner, Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic Problems.

13 / 34

Intermezzo: stiffness example

Let us consider the following simple one-dimensional system

ẋ(t) = −50(x(t)− cos(t))

14 / 34

Intermezzo: stiffness example

Let us consider the following simple one-dimensional system

ẋ(t) = −50(x(t)− cos(t))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

t

x

Stepsize h = 0.018

 explicit euler

implicit euler

exact

14 / 34

Intermezzo: stiffness example

Let us consider the following simple one-dimensional system

ẋ(t) = −50(x(t)− cos(t))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

t

x

Stepsize h = 0.038

 explicit euler

implicit euler

exact

14 / 34

Intermezzo: stiffness example

Let us consider the following simple one-dimensional system

ẋ(t) = −50(x(t)− cos(t))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

t

x

Stepsize h = 0.04

 explicit euler

implicit euler

exact

14 / 34

Intermezzo: stiffness

Stiffness depends largely on

I the eigenvalues λ(t) of the Jacobian ∂f
∂x

I but also system dimension, smoothness of the solution, . . .

⇓

I various mathematical definitions exist

I new concepts needed:
A-stability, I-stability, A(α)-stability, L-stability, . . .

Main message: stiff systems require (semi-)implicit methods!

15 / 34

Intermezzo: stiffness

Stiffness depends largely on

I the eigenvalues λ(t) of the Jacobian ∂f
∂x

I but also system dimension, smoothness of the solution, . . .

⇓

I various mathematical definitions exist

I new concepts needed:
A-stability, I-stability, A(α)-stability, L-stability, . . .

Main message: stiff systems require (semi-)implicit methods!

15 / 34

Intermezzo: stiffness

Stiffness depends largely on

I the eigenvalues λ(t) of the Jacobian ∂f
∂x

I but also system dimension, smoothness of the solution, . . .

⇓

I various mathematical definitions exist

I new concepts needed:
A-stability, I-stability, A(α)-stability, L-stability, . . .

Main message: stiff systems require (semi-)implicit methods!

15 / 34

Intermezzo: stiffness

Stiffness depends largely on

I the eigenvalues λ(t) of the Jacobian ∂f
∂x

I but also system dimension, smoothness of the solution, . . .

⇓

I various mathematical definitions exist

I new concepts needed:
A-stability, I-stability, A(α)-stability, L-stability, . . .

Main message: stiff systems require (semi-)implicit methods!

15 / 34

Linear multistep methods: software

Simulation for optimization:

I SUNDIALS: BDF and Adams in CVODE(S) + BDF in IDA(S)

I SolvIND: BDF in DAESOL-II + RK in RKFSWT

I ACADO Toolkit: BDF and RK

I . . .

16 / 34

Overview

Classes of numerical methods:

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Runge-Kutta

17 / 34

Overview

Classes of numerical methods:

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Runge-Kutta

17 / 34

Overview

Runge-Kutta methods:

Runge-Kutta

implicitexplicit

explicit

18 / 34

Overview

Runge-Kutta methods:

Runge-Kutta

implicitexplicitexplicit

18 / 34

Explicit Runge-Kutta (ERK) methods

The simplest ERK method is explicit Euler

xn = xn−1 + h fn−1

which is consistent of order one (minimum).

BUT: it is typically not a practical method... Why?
Higher order methods need much fewer steps for same accuracy!

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

Explicit Euler

Number of steps

G
lo

b
a

l
e

rr
o

r

19 / 34

Explicit Runge-Kutta (ERK) methods

The simplest ERK method is explicit Euler

xn = xn−1 + h fn−1

which is consistent of order one (minimum).

BUT: it is typically not a practical method... Why?
Higher order methods need much fewer steps for same accuracy!

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

Explicit Euler

Number of steps

G
lo

b
a

l
e

rr
o

r

19 / 34

Explicit Runge-Kutta (ERK) methods

The simplest ERK method is explicit Euler

xn = xn−1 + h fn−1

which is consistent of order one (minimum).

BUT: it is typically not a practical method... Why?

Higher order methods need much fewer steps for same accuracy!

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

Explicit Euler

Number of steps

G
lo

b
a

l
e

rr
o

r

19 / 34

Explicit Runge-Kutta (ERK) methods

The simplest ERK method is explicit Euler

xn = xn−1 + h fn−1

which is consistent of order one (minimum).

BUT: it is typically not a practical method... Why?
Higher order methods need much fewer steps for same accuracy!

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

Explicit Euler

Number of steps

G
lo

b
a

l
e

rr
o

r

19 / 34

Explicit Runge-Kutta (ERK) methods

The most popular is the following 4th order method

20 / 34

Explicit Runge-Kutta (ERK) methods

The most popular is the following 4th order method

k1 = f (tn−1, xn−1)

k2 = f (tn−1 +
h

2
, xn−1 +

h

2
k1)

k3 = f (tn−1 +
h

2
, xn−1 +

h

2
k2)

k4 = f (tn−1 + h, xn−1 + h k3)

xn = xn−1 +
h

6
(k1 + 2k2 + 2k3 + k4)

20 / 34

Explicit Runge-Kutta (ERK) methods
The most popular is the following 4th order method

k1 = f (tn−1, xn−1)

k2 = f (tn−1 +
h

2
, xn−1 +

h

2
k1)

k3 = f (tn−1 +
h

2
, xn−1 +

h

2
k2)

k4 = f (tn−1 + h, xn−1 + h k3)

xn = xn−1 +
h

6
(k1 + 2k2 + 2k3 + k4)

10
0

10
1

10
2

10
3

10
4

10
−20

10
−15

10
−10

10
−5

10
0

Explicit Euler vs Runge−Kutta 4

Number of steps

G
lo

b
a

l
e

rr
o

r

Euler

RK4

20 / 34

Explicit Runge-Kutta (ERK) methods

The RK4 method

k1 = f (tn−1, xn−1)

k2 = f (tn−1 +
h

2
, xn−1 +

h

2
k1)

k3 = f (tn−1 +
h

2
, xn−1 +

h

2
k2)

k4 = f (tn−1 + h, xn−1 + h k3)

xn = xn−1 +
h

6
(k1 + 2k2 + 2k3 + k4)

21 / 34

Explicit Runge-Kutta (ERK) methods

So a general s-stage ERK method

k1 = f (tn−1, xn−1)

k2 = f (tn−1 + c2 h, xn−1 + a21 h k1)

k3 = f (tn−1 + c3 h, xn−1 + a31 h k1 + a32 h k2)

...

ks = f (tn−1 + cs h, xn−1 + as1 h k1 + as2 h k2 + . . .+ as,s−1 h ks−1)

xn = xn−1 + h
s∑

i=1

bi ki

21 / 34

Explicit Runge-Kutta (ERK) methods

So a general s-stage ERK method

k1 = f (tn−1, xn−1)

k2 = f (tn−1 + c2 h, xn−1 + a21 h k1)

k3 = f (tn−1 + c3 h, xn−1 + a31 h k1 + a32 h k2)

.

.

.

ks = f (tn−1 + cs h, xn−1 + as1 h k1 + as2 h k2 + . . . + as,s−1 h ks−1)

xn = xn−1 + h
s∑

i=1

bi ki

0
c2 a21
c3 a31 a32
.
.
.

.

.

.
. . .

cs as1 as2 · · ·
b1 b2 · · · bs

21 / 34

Explicit Runge-Kutta (ERK) methods

So a general s-stage ERK method

k1 = f (tn−1, xn−1)

k2 = f (tn−1 + c2 h, xn−1 + a21 h k1)

k3 = f (tn−1 + c3 h, xn−1 + a31 h k1 + a32 h k2)

.

.

.

ks = f (tn−1 + cs h, xn−1 + as1 h k1 + as2 h k2 + . . . + as,s−1 h ks−1)

xn = xn−1 + h
s∑

i=1

bi ki

0
c2 a21
c3 a31 a32
.
.
.

.

.

.
. . .

cs as1 as2 · · ·
b1 b2 · · · bs

NOTE: each Runge-Kutta method is defined by its Butcher table!
other examples are e.g. the methods of Runge and Heun, . . .

21 / 34

Intermezzo: Step size control

Typically:

no constant step size but suitable error control

based on a local error estimate:

ei ≈ ‖x(ti)− x(ti ; ti−1, x(ti−1))‖

22 / 34

Intermezzo: Step size control

Typically:

no constant step size but suitable error control

based on a local error estimate:

ei ≈ ‖x(ti)− x(ti ; ti−1, x(ti−1))‖

22 / 34

Intermezzo: Step size control

Example:

Euler: xn = xn−1 + h fn−1

Let us create a reference solution using 2 steps with h/2:

xn−1/2 = xn−1 +
h

2
fn−1

x̃n = xn−1/2 +
h

2
fn−1/2

en = x̃n − xn ⇒ accept/reject

and update the step size: hn = 0.9 hn−1
p+1

√
TOL

E

Embedded methods: Fehlberg (e.g. RKF45), Dormand-Prince, . . .

23 / 34

Intermezzo: Step size control

Example:

Euler: xn = xn−1 + h fn−1

Let us create a reference solution using 2 steps with h/2:

xn−1/2 = xn−1 +
h

2
fn−1

x̃n = xn−1/2 +
h

2
fn−1/2

en = x̃n − xn ⇒ accept/reject

and update the step size: hn = 0.9 hn−1
p+1

√
TOL

E

Embedded methods: Fehlberg (e.g. RKF45), Dormand-Prince, . . .

23 / 34

Intermezzo: Step size control

Example:

Euler: xn = xn−1 + h fn−1

Let us create a reference solution using 2 steps with h/2:

xn−1/2 = xn−1 +
h

2
fn−1

x̃n = xn−1/2 +
h

2
fn−1/2

en = x̃n − xn ⇒ accept/reject

and update the step size: hn = 0.9 hn−1
p+1

√
TOL

E

Embedded methods: Fehlberg (e.g. RKF45), Dormand-Prince, . . .

23 / 34

Intermezzo: Step size control

Example:

Euler: xn = xn−1 + h fn−1

Let us create a reference solution using 2 steps with h/2:

xn−1/2 = xn−1 +
h

2
fn−1

x̃n = xn−1/2 +
h

2
fn−1/2

en = x̃n − xn ⇒ accept/reject

and update the step size: hn = 0.9 hn−1
p+1

√
TOL

E

Embedded methods: Fehlberg (e.g. RKF45), Dormand-Prince, . . .

23 / 34

Overview

Runge-Kutta methods:

Runge-Kutta

implicitexplicit

implicit

24 / 34

Overview

Runge-Kutta methods:

Runge-Kutta

implicitexplicit implicit

24 / 34

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · ·
b1 b2 · · · bs

⇒

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

...
cs as1 · · · ass

b1 · · · bs

25 / 34

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · ·
b1 b2 · · · bs

⇒

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

...
cs as1 · · · ass

b1 · · · bs

25 / 34

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

k1 = f

tn−1 + c1 h, xn−1 + h
s∑

j=1

a1j kj


.
.
.

ks = f

tn−1 + cs h, xn−1 + h
s∑

j=1

asj kj


xn = xn−1 + h

s∑
i=1

bi ki

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

...
cs as1 · · · ass

b1 · · · bs

pro: nice properties (order, stability)

con: large nonlinear system

26 / 34

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

k1 = f

tn−1 + c1 h, xn−1 + h
s∑

j=1

a1j kj


.
.
.

ks = f

tn−1 + cs h, xn−1 + h
s∑

j=1

asj kj


xn = xn−1 + h

s∑
i=1

bi ki

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

...
cs as1 · · · ass

b1 · · · bs

pro: nice properties (order, stability)

con: large nonlinear system

26 / 34

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

k1 = f

tn−1 + c1 h, xn−1 + h
s∑

j=1

a1j kj


.
.
.

ks = f

tn−1 + cs h, xn−1 + h
s∑

j=1

asj kj


xn = xn−1 + h

s∑
i=1

bi ki

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

...
cs as1 · · · ass

b1 · · · bs

pro: nice properties (order, stability)

con: large nonlinear system

26 / 34

Implicit Runge-Kutta (IRK) methods

Explicit ODE system:

ẋ(t) = f (t, x(t))

k1 = f

tn−1 + c1 h, xn−1 + h
s∑

j=1

a1j kj


.
.
.

ks = f

tn−1 + cs h, xn−1 + h
s∑

j=1

asj kj


xn = xn−1 + h

s∑
i=1

bi ki

Implicit ODE/DAE (index 1):

0 = f (t, ẋ(t), x(t), z(t))

0 = f

tn−1 + c1 h, k1, xn−1 + h
s∑

j=1

a1j kj , Z1


.
.
.

0 = f

tn−1 + cs h, ks , xn−1 + h
s∑

j=1

asj kj , Zs


xn = xn−1 + h

s∑
i=1

bi ki

27 / 34

Implicit Runge-Kutta (IRK) methods

Explicit ODE system:

ẋ(t) = f (t, x(t))

k1 = f

tn−1 + c1 h, xn−1 + h
s∑

j=1

a1j kj


.
.
.

ks = f

tn−1 + cs h, xn−1 + h
s∑

j=1

asj kj


xn = xn−1 + h

s∑
i=1

bi ki

Implicit ODE/DAE (index 1):

0 = f (t, ẋ(t), x(t), z(t))

0 = f

tn−1 + c1 h, k1, xn−1 + h
s∑

j=1

a1j kj , Z1


.
.
.

0 = f

tn−1 + cs h, ks , xn−1 + h
s∑

j=1

asj kj , Zs


xn = xn−1 + h

s∑
i=1

bi ki

27 / 34

Implicit Runge-Kutta (IRK) methods

Explicit ODE system:

ẋ(t) = f (t, x(t))

k1 = f

tn−1 + c1 h, xn−1 + h
s∑

j=1

a1j kj


.
.
.

ks = f

tn−1 + cs h, xn−1 + h
s∑

j=1

asj kj


xn = xn−1 + h

s∑
i=1

bi ki

Implicit ODE/DAE (index 1):

0 = f (t, ẋ(t), x(t), z(t))

0 = f

tn−1 + c1 h, k1, xn−1 + h
s∑

j=1

a1j kj, Z1


.
.
.

0 = f

tn−1 + cs h, ks, xn−1 + h
s∑

j=1

asj kj, Zs


xn = xn−1 + h

s∑
i=1

bi ki

27 / 34

Collocation methods

Important family of IRK methods:

I distinct ci ’s (nonconfluent)

I polynomial q(t) of degree s

q(tn−1) = xn−1

q̇(tn−1 + c1h) = f (tn−1 + c1h, q(tn−1 + c1h))

...

q̇(tn−1 + csh) = f (tn−1 + csh, q(tn−1 + csh))

continuous approximation

⇒ xn = q(tn−1 + h)

NOTE: this is very popular
in direct optimal control!

28 / 34

Collocation methods

Important family of IRK methods:

I distinct ci ’s (nonconfluent)

I polynomial q(t) of degree s

q(tn−1) = xn−1

q̇(tn−1 + c1h) = f (tn−1 + c1h, q(tn−1 + c1h))

...

q̇(tn−1 + csh) = f (tn−1 + csh, q(tn−1 + csh))

continuous approximation

⇒ xn = q(tn−1 + h)

NOTE: this is very popular
in direct optimal control!

28 / 34

Collocation methods

Important family of IRK methods:

I distinct ci ’s (nonconfluent)

I polynomial q(t) of degree s

q(tn−1) = xn−1

q̇(tn−1 + c1h) = f (tn−1 + c1h, q(tn−1 + c1h))

...

q̇(tn−1 + csh) = f (tn−1 + csh, q(tn−1 + csh))

continuous approximation

⇒ xn = q(tn−1 + h)

NOTE: this is very popular
in direct optimal control!

28 / 34

Collocation methods

How to implement a collocation method?

q(tn−1) = xn−1

q̇(tn−1 + c1h) = f (tn−1 + c1h, q(tn−1 + c1h))

.

.

.

q̇(tn−1 + cs h) = f (tn−1 + cs h, q(tn−1 + cs h))

29 / 34

Collocation methods

How to implement a collocation method?

q(tn−1) = xn−1

q̇(tn−1 + c1h) = f (tn−1 + c1h, q(tn−1 + c1h))

.

.

.

q̇(tn−1 + cs h) = f (tn−1 + cs h, q(tn−1 + cs h))

This is nothing else than . . .

k1 = f (tn−1 + c1 h, xn−1 + h
s∑

j=1

a1j kj)

.

.

.

ks = f (tn−1 + cs h, xn−1 + h
s∑

j=1

asj kj)

xn = xn−1 + h
s∑

i=1

bi ki

where the Butcher table is defined by the collocation nodes ci .

29 / 34

Collocation methods

Example: The Gauss methods

I roots of Legendre
polynomials

I A-stable

I optimal order
(p = 2s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s = 1, p = 2

s = 2, p = 4

s = 3, p = 6

30 / 34

Collocation methods

Example: The Gauss methods

I roots of Legendre
polynomials

I A-stable

I optimal order
(p = 2s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s = 1, p = 2

s = 2, p = 4

s = 3, p = 6

30 / 34

Collocation methods

Example: The Gauss methods

I roots of Legendre
polynomials

I A-stable

I optimal order
(p = 2s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s = 1, p = 2

s = 2, p = 4

s = 3, p = 6

c1 =
1

2
, s = 1, p = 2,

c1 =
1

2
−
√

3

6
, c2 =

1

2
+

√
3

6
, s = 2, p = 4,

c1 =
1

2
−
√

15

10
, c2 =

1

2
, c3 =

1

2
+

√
15

10
, s = 3, p = 6.

30 / 34

Collocation methods

Example: The Gauss methods

I roots of Legendre
polynomials

I A-stable

I optimal order
(p = 2s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s = 1, p = 2

s = 2, p = 4

s = 3, p = 6

At least as popular:
Radau IIA methods (p = 2s − 1, stiffly accurate, L-stable)

30 / 34

Overview

Runge-Kutta methods:

Runge-Kutta

implicitexplicit

31 / 34

Overview

Runge-Kutta methods:

Runge-Kutta

explicit implicitsemi-implicit

31 / 34

Semi-implicit Runge-Kutta methods

The matrix A is not strictly lower triangular . . .

but there is a specific structure!

I Diagonal IRK (DIRK)

I Singly DIRK (SDIRK)

I Explicit SDIRK (ESDIRK)

32 / 34

Semi-implicit Runge-Kutta methods

The matrix A is not strictly lower triangular . . .
but there is a specific structure!

I Diagonal IRK (DIRK)

I Singly DIRK (SDIRK)

I Explicit SDIRK (ESDIRK)

32 / 34

Summary

I High order schemes preferable for smooth problems

I Explicit methods are good for non-stiff systems

I For stiff and/or implicit models, the use of implicit methods
(BDF, IRK, ...) is highly recommended

33 / 34

Summary

I High order schemes preferable for smooth problems

I Explicit methods are good for non-stiff systems

I For stiff and/or implicit models, the use of implicit methods
(BDF, IRK, ...) is highly recommended

33 / 34

Summary

I High order schemes preferable for smooth problems

I Explicit methods are good for non-stiff systems

I For stiff and/or implicit models, the use of implicit methods
(BDF, IRK, ...) is highly recommended

33 / 34

References

I E. Hairer, S.P. Nørsett, and G. Wanner: Solving Ordinary
Differential Equations I, Springer Series in Computational
Mathematics, Berlin, 1993.

I E. Hairer and G. Wanner: Solving Ordinary Differential
Equations II Stiff and Differential-Algebraic Problems,
Springer, Berlin Heidelberg, 1996.

I K.E. Brenan, S.L. Campbell, and L.R. Petzold: The Numerical
Solution of Initial Value Problems in Differential-Algebraic
Equations, SIAM Classics Series, 1996.

I U.M. Ascher and L.R. Petzold: Computer Methods for
Ordinary Differential Equations and Differential-Algebraic
Equations. SIAM, 1998.

34 / 34

