

Overview

- Ordinary Differential Equations (ODE)
- Differential Algebraic Equations (DAE)
- Partial Differential Equations (PDE)
- Delay Differential Equations (DDE)

Comments

Ordinary Differential Equations (ODE)

- General ODE:

$$
\dot{x}(t)=f(x(t), u(t), \epsilon(t), p)
$$

- states $x(t)$, control inputs $u(t)$, disturbances $\epsilon(t)$, unknown parameters p (constant in time). All variables are vector valued.
- Here, $\dot{x}=\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\partial x}{\partial t}$. Total and partial derivative coincide as x only depends on t.
- for notational simplicity, we usually omit time dependence and write $\dot{x}=f(x, u, \epsilon, p)$
- for even simpler notation, from now on we omit $u(t), \epsilon(t)$ and p in this talk. They should be added again when necessary.
- Standard form of ODE for this talk:

$$
\dot{x}=f(x)
$$

Comments

Examples (what are their state vectors?)

- Pendulum
- Hot plate with pot
- Continuously Stirred Tank Reactors (CSTR)
- Robot arms
- Moving robots
- Race cars
- Airplanes in free flight

Comments

Comments

Differential Algebraic Equations (DAE)

$$
\begin{aligned}
& e^{8}+x=0 \Leftrightarrow z=\log (-x) \\
& \text { - similar to ODE } \\
& \text { - besides differential states } x \in \mathbb{R}^{n_{x}} \text { there are also algebraic } \\
& \text { states } z \in \mathbb{R}^{n_{z}} \\
& \text { - Standard form of DAE ("semi-explicit DAE"): } \\
& \dot{x}=f\left(x, z^{x}(x)\right) \\
& e^{z}+z+\sin (z)+x=0 \\
& \begin{array}{l|ll}
\dot{x}=f(x, z) \\
0=g(x, z)
\end{array} \left\lvert\, \begin{array}{lll}
n_{x} & \\
n_{z} & \Delta z^{*}(x) \\
g\left(x, z^{*}(x)\right)
\end{array}\right. \\
& g\left(x, z^{x}(x)\right)=0 \\
& g(x, z)=0 \text { The algebraic equations } g(x, z)=0 \text { implicitly determine } z \text {. } \\
& \text { Here, } z \text { and } g \text { have the same dimension, ide. } g(x, z) \in \mathbb{R}^{n_{z}} \\
& \text { - for uniqueness and numerical solvability, we usually have to } \\
& \text { assume that the Jacobian } \frac{\partial g}{\partial z} \in \mathbb{R}^{n_{z} \times n_{z}} \text { is invertible ("index } \\
& \text { one") } \\
& \text { - Index-one DAE can be solved by dedicated solvers }
\end{aligned}
$$

Comments

Equivalence of DAE with ODE (1)

- Index-one DAE can in theory be differentiated to obtain a standard ODE
- take total time derivative of algebraic equation w.r.t. time t :

$$
g(x, z)=0 \Rightarrow \frac{\mathrm{~d} g}{\mathrm{~d} t}(x, z)=0
$$

- right equation is equivalent to

$$
\frac{\partial g}{\partial z} \dot{z}+\frac{\partial g}{\partial x} \dot{x}=0
$$

which, because of invertibility of $\frac{\partial g}{\partial z}$ is equivalent to

$$
\dot{z}=-\left(\frac{\partial g}{\partial z}\right)^{-1} \frac{\partial g}{\partial x} f(x, z)
$$

- this procedure is called "index reduction"

Comments

Equivalence of DAE with ODE (2)

- After index reduction, we obtain an ODE (ODE = "DAE of index zero")

$$
\begin{aligned}
\dot{x} & =f(x, z) \\
\dot{z} & =-\left(\frac{\partial g}{\partial z}\right)^{-1} \frac{\partial g}{\partial x} f(x, z)
\end{aligned}
$$

- this ODE ensures that $\frac{\mathrm{d} g}{\mathrm{~d} t}=0$, i.e. the value of $g(x(t), z(t))$ remains constant along trajectories: g is an "invariant"
- algebraic equation satisfied for all t if it holds for initial value, i.e.

$$
g(x(0), z(0))=0
$$

Comments

More General DAE Formulations

1. fully implicit DAE
2. high index DAE

Comments

1) Fully Implicit DAE

- Fully-implicit DAE described by one large nonlinear equation system

$$
f(\dot{x}, x, z)=0
$$

with $f(\dot{x}, x, z) \in \mathbb{R}^{\left(n_{x}+n_{z}\right)}$ and $\frac{\partial f}{\partial(\dot{x}, z)}$ invertible (in ex -o $)$

- a special case of this are implicit ODE $f(\dot{x}, x)=0$ 手 $\frac{\partial x}{\partial x}$ inutile
- often appear in mechanical or chemical applications
- Example: conservation equations like thermal energy in a basin of water given by $E(t)=k \cdot m(t) \cdot T(t)$ with heat capacity k, mass $m(t)$, and temperature $T(t)$

$$
\begin{gathered}
\dot{E}=k \dot{m} T+k m \dot{T}=D \quad \text { NET ENERGY } \\
=\quad \text { INFLGA }
\end{gathered}
$$

Comments

Fully Implicit DAE Example in MATLAB

- Function ode15i solves fully implicit DAE, all states in one vector $y=(x, z)^{\top}$. Grammar: $f(t, y, \dot{y})=0$
- define implicit DAE:

```
function [ resid ] = mydae( t, y, ydot )
resid=zeros(2,1);
resid(1)=ydot(1)+y(1)+y(2);
y 吕(n)= - yn-s.(t)
resid(2)=y(2)-sin(t);
y(2)=5-(t)
end
```

- create consistent initial values:
$\mathrm{y} 0=[10 ; 0]$;
ydot0=[-10;1];
- call solver (on time interval $[0,10]$):
[tout, yout]=ode15i(@mydae, [0, 10], y0,ydot0) plot(tout, yout)

Comments

2) High Index DAE

- high index DAE $=$ DAE of "index n " with $n \geq 2$
- index refers to number of total time derivatives needed to reduce it to index zero (=ODE)
- in practice, reduction to index one DAE is enough, because good DAE solvers exist for index one e.g. MATLAB ode15i

Comments

Overview

- Ordinary Differential Equations (ODE)
- Differential Algebraic Equations (DAE)
- Partial Differential Equations (PDE)
- Delay Differential Equations (DDE)

Partial Differential Equations (PDE)

- typically arise from spatially distributed parameters (PDE = "distributed parameter systems")
- involve partial derivatives of several variables, not only w.r.t. of time t, but also with respect of spatial coordinates x
- often, solution is called $u(t, x)$

Attention: x and u have totally different meanings here than otherwise!

- easiest example: heat (diffusion) equation in one dimension:

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}
$$

with D diffusion constant

Comments

PDE (contd.)

- need to specify "boundary conditions" in space and "initial conditions" at time zero (i.e. $u(x, 0)$)
- initial conditions are given by a profile in space: we have, loosely speaking, infinitely many states!
- can be discretized by e.g. Finite Element Method (FEM), Finite Volumes, Finite Differences
- often, only spatial derivatives are discretized, but time derivatives remain so that ODE solver can be used ("method of lines")

Comments

PDE Examples

- temperature profile in a microchip, a water tank, a wall, the inner part of the earth
- airflow in a computer, around an airplane, in a building, in the atmosphere ("computational fluid dynamics", CFD)
- growth of bacteria in a petri-dish
- chemical concentrations in a tubular reactor

Comments

Example: Heat Equation

- Regard heat equation

$$
\frac{\partial u(x, t)}{\partial t}=D \frac{\partial^{2} u(x, t)}{\partial x^{2}}
$$

with $x \in[0,1]$. Boundary conditions:
$u(0, t)=\sin (t), u(1, t)=0$.

- apply "method of lines" i.e. keep time derivatives,
- apply finite differences to spatial derivatives
- use grid size $\Delta x=1 / N$, regard $u_{k} \approx u(k \cdot \Delta x, t)$
- obtain an ODE

$$
\dot{u}_{k}=D \frac{\left(u_{k+1}-2 u_{k}+u_{k-1}\right)}{(\Delta x)^{2}}
$$

for $k=1, \ldots, N-1$.

- incorporate boundary conditions as

$$
u_{0}=\sin (t) \quad \text { and } \quad u_{N}=0
$$

- set initial condition e.g. to $u(x, 0)=0$.
- use stiff ODE solver ode15s to simulate the system

Comments

Example in MATLAB (1)

- setup ODE:
function [udot] $=$ mypde(t,u)
$\mathrm{N}=20$; $\mathrm{D}=0.1$; udot=zeros $(\mathrm{N}, 1)$;
$\mathrm{u} 0=\sin (\mathrm{t})$;
$\operatorname{udot}(1)=\mathrm{N} * \mathrm{~N} * \mathrm{D} *(\mathrm{u} 0-2 * \mathrm{u}(1)+\mathrm{u}(2))$;
for $\mathrm{k}=2$: $\mathrm{N}-1$
$\operatorname{udot}(k)=N * N * D *(u(k-1)-2 * u(k)+u(k+1))$;
end
uN=0;
$\operatorname{udot}(N)=N * N * D *(u)-2 * u(N)+u N) ;$
(${ }^{-1}$)

Comments

Example in MATLAB (2)

1

- specify initial values:
$y 0=z e r o s(20,8)$;
- call ODE solver (on interval $[0,10]$) and plot results:
[tout,yout]=ode15s(@mypde, [0 10], yO)
figure (1); plot(tout,yout);
figure (2) ; surf(tout,linspace(0,1,20),yout')

$$
\dot{x}=A x
$$

Comments

Overview

- Ordinary Differential Equations (ODE)
- Differential Algebraic Equations (DAE)
- Partial Differential Equations (PDE)
- Delay Differential Equations (DDE)

Delay Differential Equations (DDE)

- arise because of communication delays or transport phenomena
- general form with delay d :

$$
\dot{x}(t)=f(x(t-d))
$$

- in order to simulate system, need to know $x(t)$ on a complete interval $t \in[0, d]$. Like for PDE, we have infinitely many initial conditions!
- Can model delay by "pipe flow" PDE on interval $x \in[0,1]$

$$
\frac{\partial u}{\partial t}=-\frac{1}{d} \frac{\partial u}{\partial x}
$$

with $u(0, t)=x(t)$ (input into pipe) and $x(t-d)=u(1, t)$ (output of pipe).

Approximating DDE

- Pipe flow can be approximated by spatial discretization, resulting in a sequence of first order delays ("PT1")
- Example with $x \in \mathbb{R}$:

$$
\dot{x}(t)=-x(t-d)
$$

- introducing N "helper states" u_{1}, \ldots, u_{N} we get for $k=1, \ldots, N$:

$$
\dot{u}_{k}=-\frac{N}{d}\left(u_{k}-u_{k-1}\right)
$$

with $u_{0}(t)=x(t)$

- last helper state approximates delayed value, i.e. $x(t-d) \approx u_{N}$
- in practice, often $N=2$ to 5 approximate real delay sufficiently accurate

Example in MATLAB

- setup ODE:

```
function [ ydot] = mydde(t, y)
d=1; N=20; ydot=zeros(N,1);
for k=2:N
    ydot(k)=-N/d*(y(k)-y(k-1));
end
ydot(1)= - y(N);
end
```

- specify initial values:
$y 0=z e r o s(20,0) ; y 0(1)=1$
- call ODE solver (on interval $[0,10]$) and plot results:
[tout,yout]=ode15s(@mypde, [0 10], y0);
figure(1); plot(tout,yout);
figure(2) ; surf(tout,linspace (0,1,20),yout')

Comments

